1.      N. Kobayashi, Y. Kawakami, K. Kamada, J.-G. Li, R. Ye, T. Watanabe and T. Ishigaki, gSpherical Submicron-Size Copper Powders Coagulated from a Vapor Phase in RF Induction Thermal Plasmah, Thin Solid Films, in press.

 

2.      J.-G. Li, X.H. Wang, C.C. Tang, T. Ishigaki and S. Tanaka, gEnergy Transfer Enabled 1.53 ƒÊm Photoluminescence from Erbium-Doped TiO2 Semiconductor Nanocrystals Synthesized by Ar/O2 RF Thermal Plasmah, J. Am. Ceram. Soc., in press.

 

3.      M. Ikeda, J.-G. Li, N. Kobayashi, Y. Moriyoshi, H. Hamanaka, T. Ishigaki, gPhase formation and luminescence properties in Eu3+-doped TiO2 nanoparticles prepared by thermal plasma pyrolysis of aqueous solutionsh, Thin Solid Films, in press.

 

4.      J.-G. Li, X. Li, X. Sun, T. Ikegami and T. Ishigaki, gUniform Colloidal Spheres for (Y1-xGdx)2O3 (x=0-1): Formation Mechanism, Compositional Impacts, and Physicochemical Properties of the Oxidesh, Chem. Mater., in press.

 

5.      J.-G. Li, Y. Wang, T. Ikegami and T. Ishigaki, gDensification below 1000 deg C and grain growth behaviors of yttria doped ceria ceramicsh, Solid State Ionics, in press.

 

6.      Z. XiuAJ-.G. Li, X. LiAD. HuoAX. Sun, T. Ikegami and T. Ishigaki, gNanocrystalline Scandia Powders via Oxalate Precipitation: the Effects of Solvent and Solution pHh, J. Am. Ceram. Soc., 91[2], 603-6 (2008).

 

7.      R. YE, J.-G. Li and T. Ishigaki, gControlled Synthesis of Alumina Nanoparticles Using Inductivity Coupled Thermal Plasma with Enhanced Quenchingh, Thin Solid Films, 515[9], 4251-57 (2007).

 

8.      J.-G. Li, M. Ikeda, R. Ye, Y. Moriyoshi, T. Ishigaki, gControl of Particle Size and Phase Formation of TiO2 Nanoparticles Synthsized in RF Thermal Plasmah, J. Phys. D-Appl. Phys., 40[8], 2348-53 (2007).

 

9.      N. Kobayashi, Y. Kawakami, K. Kamada, J.-G. Li, T. Watanabe and T. Ishigaki, gSpherical Submicron-Size Copper and Copper-Tungsten Powders Prepared in RF Induction Thermal Plasmah, Journal of the Japan Society of Powder and Powder Metallurgy, 54[1], 39-43 (2007). (in Japanese)

 

10.     J.-G. Li, T. Ishigaki and X. Sun, gAnatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions: Phase Selective Synthesis and Physicochemical Propertiesh, J. Phys. Chem. C, 111[13], 4969-76 (2007).

 

11.     N. Kobayashi, Y. Kawakami, K. Kamada, J.-G. Li, R. Ye, T. Watanabe and T. Ishigaki, gSynthesis of Spherical Copper Powders and Control of the Particle Diameter in RF Induction Thermal Plasmah, Trans. Mater. Res. Soc. Jpn, 32[1], 139-42 (2007).

 

12.     J.-G. Li, M. Ikeda, C. Tang, Y. Moriyoshi, H. Hamanaka and T. Ishigaki, gChlorinated nanocrystalline TiO2 Powders via One-Step Ar/O2 Radio Frequency Thermal Plasma Oxidizing Mists of TiCl3 Solution: Phase Structure and Photocatalytic Performanceh, J. Phys. Chem. C, 111, 18018-24 (2007).

 

13.     J.-G. Li, H. Kamiyama, X.-H. Wang, Y. Moriyoshi, and T. Ishigaki, gTiO2 Nanopowders via Radio-Frequency Thermal Plasma Oxidation of Organic Liquid Precursors: Synthesis and Characterizationh, J. Euro. Ceram. Soc., 26, 423-28 (2006).

 

14.     J.-G. Li, X. H. Wang and T. Ishigaki, gPhase Structure and Luminescence Properties of Eu3+ doped TiO2 Nanocrystals Synthesized by Ar/O2 RF Thermal Plasma Oxidation of Liquid Precursor Mistsh, J. Phys. Chem. B, 110[3], 1121-27 (2006).

 

15.     X.-H. Wang, J.-G. Li, H. Kamiyama and T. Ishigaki , gFe-doped TiO2 Nanopowders by Oxidative Pyrolysis of Organometallic Precursors in Induction Thermal Plasma Synthesis and Structural Characterizationh, Thin Solid Films, 506-507, 278-82 (2006).

 

16.     J.-G. Li, X.H. Wang, H. Kamiyama, T. Ishigaki and T. Sekiguchi, gRF-Plasma Processing of Er-Doped TiO2 Luminescent Nanoparticlesh, Thin Solid Films, 506-507, 292-96 (2006).

 

17.     X.-H. Wang, J.-G. Li, H. Kamiyama, Y. Moriyoshi and T. Ishigaki, gWavelength-Sensitive Photocatalytic Degradation of Methyl Orange in Aquenos Suspension over Iron(‡V)-Doped TiO2 Nanopowders under UV and Visible Light Irradiationh, J. Phys.Chem. B, 110, 6804-09 (2006).

 

18.     J.-G. Li, X.-J. Yang and T. Ishigaki, gUrea Coordinated Titanium Trichloride Ti‡V [OC(NH)2]6Cl3: A Single Molecular Precursor Yielding Highly Visible-Light Responsible TiO2 Nanocrystallitesh, J Pys. Chem. B, 110, 14611-18 (2006).

 

19.     K. Yamaura, X.-H. Wang, J.-G. Li, T. Ishigaki and E. Takayama-Muromachi, gMagnetic Properties of the Highly Iron-Doped Rutile TiO2 Nano Crystalsh, Mater. Res. Bull., 41, 2080-87 (2006).

 

20.     S.-M. Oh, J.-G. Li and T. Ishigaki,hNanocrystalline TiO2 Powders Synthesized by In-Flight Oxidation of TiN in Thermal Plasma:  Mechanisms of Phase Selection and Particle Morphology Evolutionh, J. Mater. Res., 20[2], 529-37 (2005).

 

21.     T. Ishigaki, S.-M. Oh, J.-G. Li and D.-W. Park, gControlling the Synthesis of TaC Nanopowders by Injecting Liquid Precursor into RF Induction Plasmah, Sci. Technol.  Advan. Mater., 6[2], 111-8 (2005).

 

22.     J.-G. Li, Y. Wang, T. Ikegami, T. Mori and T. Ishigaki, gReactive 10mol% RE2O3 (RE=Gd, Sm) Doped CeO2 Nanopowders: Synthesis, Characterization, and Low-Temperature Sintering into Dense Ceramicsh, Mater. Sci. Eng. B, 121, 54-59 (2005).

 

23.     X.-H. Wang, J.-G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi and T. Ishigaki, gPyrogenic Iron(III)-Doped TiO2 Nanopowders Synthesized in RF Thermal Plasma: Phase Formation, Defect Structure, Band Gap and Magnetic Propertiesh, J. Am. Chem. Soc., 127[31], 10982-90 (2005).

 

24.     T. Mori, T. Kobayashi, Y. Wang, J. Drennan, S. Nishimura, J.-G. Li and H. Kobayashi , gSynthesis and Characterization of Nano-Hetero-Structured Dy Doped CeO2 Solid Electrolytes Using a Combination of Spark Plasma Sintering and Conventional Sinteringh, J. Am. Ceram. Soc., 88[7], 1981-84 (2005).

 

25.     J.-G. Li and T. Ishigaki, gSynthesis of Anatase-Type TiO2 Nanocrystallites via a Redox Routeh, J. Am. Ceram. Soc., 88[11], 3232-34 (2005).

 

26.     Y. Wang, T. Mori, J. Drennan, J.-G. Li and Y. Yajima, gLow-temperature Synthesis of 10 mol% Gd2O3-doped CeO2 Ceramics and Its Characterizationh, J. Ceram. Soc. Jpn, 112[5], S41-S45 (2004).

 

27.     T. Mori, J. Drennan, Y. Wang, G. Auchterlonie and J.-G. Li , gInfluence of Nano-structural Feature on Electrolytic Properties in Gd Doped CeO2 solid Electrolytesh, J. Ceram. Soc. Jpn, 112[5], S642-S648 (2004).

 

28.     J.-G. Li and T. Ishigaki, gBrookite to Rutile Phase Transformation of TiO2 Studied with Monodispersed Particlesh, Acta Mater., 52, 5143-50 (2004).

 

29.     J.-G. Li, C. Tang, D. Li, and T. Ishigaki, gMonodispersed spherical particles of brookite-type TiO2: synthesis, characterization, and photocatalytic propertyh, J. Am. Ceram. Soc., 87[7], 1358-61 (2004).

 

30.     J.-G. Li, T. Ikegami, T. Mori, and Y. Yajima, gSc2O3 nanopowders via hydroxyl precipitation: the effects of sulfate ions on powder propertiesh, J. Am. Ceram. Soc., 87[6], 1008-13 (2004).

 

31.     J.-G. Li, T. Ikegami, and T. Mori, gLow temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviorsh, Acta Mater, 52[8] 2221-28 (2004).

 

32.     T. Ikegami, J.-G. Li, I. Sakaguchi, and K. Hirota, gMorphology change of

undoped and sufate-ion-doped yttria powders during firingh, J. Am. Ceram. Soc.,

87[3] 517-19 (2004).

 

33.     J.-G. Li, T. Ikegami, T. Mori, and Y. Yajima,hSolution-based processing of Sc2O3 nanopowders yielding transparent ceramicsh, J. Mater. Res., 19 [3] 733-36 (2004).

 

34.     J.-G. Li, T. Ikegami, T. Mori, and Y. Yajima, gWet-chemical routes leading to scandia nanopowdersh, J. Am. Ceram. Soc., 86 [9] 1493-99 (2003).

 

35.     J.-G. Li, T. Ikegami, T. Mori, gFabrication of transparent Sc2O3 ceramics with powders thermally pyrolyzed from sulfateh, J. Mater. Res., 18 [8] 1816-22 (2003).

 

36.     J.-G. Li, T. Ikegami, Y. Wang, and T. Mori, g10mol% Gd2O3-doped CeO2

solid-solutions via carbonate coprecipitation: a comparative studyh, J. Am. Ceram. Soc., 86 [6] 915-21 (2003).

 

37.     J.-G. Li, T. Ikegami, T. Mori, Y. Yajima, gMonodispersed Sc2O3 precursor particles via homogeneous precipitation: synthesis, thermal decomposition, and the effects of supporting anions on powder propertiesh, J. Mater. Res., 18[5] 1149-56 (2003).

 

38.     X.-D. Sun, J.-G. Li, F. Zhang, X. Qin, Z. Xiu, H. Ru, and J. You, gSynthesis of Nanocrystalline a-Al2O3 Powders From Nonometric Ammonium Aluminum Carbonate Hydroxideh, J. Am. Ceram. Soc., 86 [8] 1321-25 (2003).

 

39.     Y. Wang, T. Mori, J.-G. Li, and Y. Yajima, gLow-temperature fabrication and

electrical property of 10 mol% Sm2O3-doped CeO2 ceramicsh, Sci. Tech. Adv. Mater., 4, 229-38 (2003).

 

40.     T, Mori, J. Drennan, Y. Wang, G. Auchterlonie, J.-G. Li, and A. Yago, ggInfluence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 systemh, Sci. Tech. Adv. Mater., 4, 213-20 (2003).

 

41.     T. Mori, J. Drennan, Y. Wang, J.-H. Lee, J.-G. Li, and T. Ikegami, gElectrolytic properties and nanostructural features in the La2O3-CeO2 systemh, J. Electrochem. Soc., 150 [6], A665-A73 (2003).

 

42.     Y. Wang, T. Mori, J.-G. Li, T. Ikegami, and Y. Yajima, gLow-temperature preparation of dense 10mol%-Y2O3-doped CeO2 ceramics using powders synthesized via carbonate coprecipitationh, J. Mater. Res., 18 [5] 1239-46 (2003).

 

43.     J.-G. Li, T. Ikegami, Y. Wang, and T. Mori, gNanocrystalline Ce1-xYxO2-x/2

(0£x£0.35) oxides via carbonate precipitation: synthesis and characterizationh, J. Solid State Chem., 168[1] 52-9 (2002).

 

44.     J.-G. Li, T. Ikegami, Y. Wang, and T. Mori, gReactive ceria nanopowders via

carbonate precipitationh, J. Am. Ceram. Soc., 85[9] 2376-78 (2002).

 

45.     T. Ikegami, J.-G. Li, T. Mori, and Y. Moriyoshi, gFabrication of Transparent Yttria Ceramics by the Low-Temperature Synthesis of Yttrium Hydroxideh, J. Am. Ceram. Soc., 85 [7] 1725-29 (2002).

 

46.     Y. Wang, T. Mori, J.-G. Li, and T. Ikegami, gLow-Temperature Synthesis of

Praseodymium-doped CeO2 Nanopowdersh, J. Am. Ceram. Soc., 85[12] 3105-107

(2002).

 

47.     J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, J. Drennan, and D.-Y. Kim, gPrecursor scavenging of resistive grain-boundary phase in 8mol% ytterbia-stabilized zirconiah, J. Electrochem. Soc., 149[3], J35-J40 (2002).

 

48.     T. Mori, J. Drennan, Y. Wang, J.-G. Li, and T. Ikegami, gInfluence of nanostructure on electrolytic properties in CeO2 based systemh, J. Thermal Analysis and Calorimetry, 70, 309-19 (2002).

 

49.     T. Mori, J. Drennan, J.-H. Lee, J.-G. Li, and T. Ikegami, gOxide ionic conductivity and microstructure of Sm or La doped CeO2 based systemh, Solid State Ionics, 154-155C, 461-6 (2002).

 

50.     T. Mori, J. Drennan, J.-H. Lee, J.-G. Li, and T. Ikegami, hImproving the ionic conductivity of yttria stabilized zirconia electrolyte materialsh, Solid State Ionics, 154-155C, 529-33 (2002).

 

51.     J.-G. Li, T. Ikegami, T. Mori, and T. Wada, gReactive Ce0.8RE0.2O1.9 (RE =

La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation: ‡T, synthesis and characterizationh, Chem. Mater., 13[9], 2913-20 (2001).

 

52.     J.-G. Li, T. Ikegami, T. Mori, and T. Wada, gReactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation: ‡U,

Sinteringh, Chem. Mater., 13[9], 2921-7 (2001).

 

53.     J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori, and Y. Yajima, gA wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powderh, Ceram.

Int., 27[4], 481-9 (2001).

 

54.     J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori, gCharacterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide methodh, Acta Mater., 49[3], 419-26 (2001).

 

55.     J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori, and Y. Yajima, gSynthesis of Mg-Al spinel powder via precipitation using ammonium bicarbonate as the precipitanth, J. Euro. Ceram. Soc., 21[2], 139-48 (2001).

 

56.     T. Mori, J.-H. Lee, J.-G. Li, T. Ikegami,@G. Auchterlonie, and J. Drennan, ggImprovement of the electrical properties of Y2O3 based materials using a crystallographic indexh, Solid State Ionics, 138[3-4], 277-91 (2001).

 

57.     J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, J. Drennan, and D.-Y. Kim, gScavenging of siliceous grain-boundary phase of 8 mol% ytterbia-stabilized zirconia without additiveh, J. Am. Ceram. Soc., 84[11], 2734-36 (2001).

 

58.     J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, J. Drennan, D.-Y. Kim, "Precursor Scavenging of Resistive Grain-Boundary Phase in 8 mol% Yttria-Stabilized Zirconia: The Effect of Trace Concentrations of SiO2," J. Mater. Res., 16[8], 2377-83 (2001).

 

59.     J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, and S. Takenouchi, gThe influence

of alumina addition and its distribution upon grain-boundary conduction in 15mol% calcia-stabilized zirconiah, Ceram. Int., 27[3], 269-76 (2001).

 

60.     J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, and S. Takenouchi, gImpedance spectroscopic estimation of inter-granular phase distribution in 15 mol% calcia-stabilized zirconia/alumina compositesh, J. Euro. Ceram. Soc., 21[1], 13-17 (2001).

 

61.     J.-G. Li, T. Ikegami, J.-H. Lee, and T. Mori, gFabrication of translucent

Mg-Al spinel ceramicsh, J. Am. Ceram. Soc., 83[11], 2866-68 (2000).

 

62.     J.-G. Li, T. Ikegami, J.-H. Lee, and T. Mori,hCharacterization of yttrium aluminate garnet (YAG) precursors synthesized via precipitation using ammonium bicarbonate as the precipitanth, J. Mater. Res., 15[11], 2375-86 (2000).

 

63.     J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori and Y. Yajima, gCo-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitanth, J. Euro. Ceram. Soc., 20[14-15], 2395-405 (2000).

 

64.     J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori and Y. Yajima, gReactive YAG powder via coprecipitation using ammonium hydrogen carbonate as the precipitanth, J. Mater. Res., 15[9], 1864-7 (2000).

 

65.     J.-G. Li and X.-D. Sun, gSynthesis and sintering behavior of a

nanocrystalline alpha-alumina powderh, Acta Mater., 48[12] 3103-12 (2000).

 

66.     J.-G. Li, T. Ikegami, J.-H. Lee and T. Mori, gWell-sinterable Y3Al5O12

powder from carbonate precursorh, J. Mater. Res., 15[7], 1514-23 (2000).

 

67.     J.-G. Li, T. Ikegami, J.-H. Lee, and T. Mori, gLow-temperature fabrication

of transparent YAG ceramics without additivesh, J. Am. Ceram. Soc., 83[4] 961-3

(2000).

68.     J.-G. Li, J.-H. Lee, T. Mori, Y. Yajima, S. Takenouchi, and T. Ikegami, gCrystal phase and sinterability of wet-chemically derived YAG powdersh, J. Ceram. Soc. Jpn., 108[5], 439-44 (2000) [in English].

 

69.     J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, M. Komatsu, and H. Haneda, ggImaging secondary ion mass spectroscopy observation of the scavenging siliceous film from 8 mol% yttria-stabilized zirconiah, J. Am. Ceram. Soc., 83[5], 1273-5 (2000).

 

70.     J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, M. Komatsu, and H. Haneda, ggImprovement of grain-Boundary conductivity of 8 mol% yttria-stabilized zirconia

by precursor scavenging of siliceous phaseh, J. Electrochem. Soc., 147[7], 2822-9 (2000).

 

71.     T. Ikegami, T. Mori, J.-G. Li, J.-H. Lee, H. Tokuda, and Y. Moriyoshi, gFabrication of Transparent Yttrium Aluminum Garnet Ceramics through a New Dry Mixing methodh, Taikabutsu (Japanese), 52[7], 356-64 (2000) [in Japanese].

 

72.     J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, M. Komatsu, and H. Haneda, gThe

influence of alumina distribution upon scavenging highly resistive grain-boundary phase of 8 mol% yttria-stabilized zirconiah, Electrochemistry, 68[6], 427-32 (2000).