事後評価報告書

評価委員会開催日:平成18年8月8日

評価委員: (敬称略、順不同)

末宗幾夫 北海道大学電子科学研究所付属ナノテクノロジー研究センター 教授 (主査)

田中秀数 東京工業大学極低温物性研究センター 教授 野村晋太郎 筑波大学大学院数理物質科学研究科 助教授 円福敬二 九州大学超伝導システム科学研究センター 教授

記入年月日:平成18年11月6日

	配入十万日・十八八日			
課題名	分子状半導体量子ナノ構造のコヒーレント制御の研究			
	 迫田和彰 ナノマテリアル研究所ナノ物性グループ 主席研究員 (現在:量子			
投職				
# 4 11 ·				
【実施期間、使用研究費、				
参加人数】	使用研究費(期間合計):運営費交付金:40百万円、外部資金:36百万円			
	参加人数:(平成17年度)13人(専任:7人、ポスドク:3人、外来:2人、			
	事務補助:1人)			
【研究全体の目的、目標、	研究目的及び具体的な研究目標:			
概要】	本研究では、双極子・双極子相互作用や交換相互作用による電子準位の分裂が観測できる程度にまで近付けた複数の量子ドット(以下では結合量子ドット			
	と呼ぶ), および、ドーナツ状の量子リングを作製し、主として顕微レーザー			
	分光法により電子状態と緩和過程を解明する。また、量子ビートや発光帯の分			
	裂を観測して、隣接する量子ドット間の相互作用を明らかにする。さらに、磁			
	場中での顕微レーザー分光技術を開発してスピン準位の分裂を介した光学遷移			
	の制御や、励起子のアハラノフ・ボーム効果の観測を試みる。他方、有効質量			
	近似の範囲で量子リングや結合量子ドットの電子状態を解析して、実験観測に			
	理論的基礎を与える。さらに、複数の励起子準位のレーザーパルス列によるコ			
	ヒーレント制御、および、それを利用した量子計算の原理の実証を目指す。			
	こーレント削岬、のよび、それを利用した重丁計算の原理の実証を目指す。 			
	 研究計画概要:			
	117 - 117 - 117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 - 1117 -			
	(1) 分子状半導体量子ナノ構造の創成:半導体材料の自己成長により,結合量 デットや量子リングを作製する。			
	(2) 分子状半導体量子ナノ構造の電子物性			
	(2-1) 量子リングの磁場中顕微分光:電子準位のエネルギー、寿命、スペクト			
	ル幅,不均一広がりの測定,アハラノフ・ボーム効果の実証を目指す。			
	(2-2) 結合量子ドットのドット間相互作用制御:電場や磁場の印可によるド			
	ット間相互作用の外部制御の可能性を探る。			
	(2-3) 電子状態の理論解析:量子リングなどの電子状態を有効質量近似の範			
	囲で算出する。			
	(3) 分子状半導体量子ナノ構造のコヒーレント制御:タイミングの制御された			
	複数のパルス照射が可能な光源を構築して電子状態のコヒーレント制御を行			
	う。			
【全研究期間の成果等	研究成果 (アウトプット) 、成果から生み出された効果・効用 (アウトカム) 、			
(研究全体)】	波及効果(インパクト):			
	一当物の明光計画では深く同力顕微鏡を心布した周囲版化を用いて、延慢したと つの量子ドット(結合量子ドット)を作製する予定であった。ところが、物質・			
	つい重チャッド(福日重チャッド)を作業するアにじめった。こころが、初員・ 材料研究機構のオリジナル技術である液滴エピタキシー法の展開研究の中から,			
	2 重量子リングの自己成長に世界で初めて成功した。2 重量子リングはまさに近			
	接した2つのナノ構造であり、主たる研究対象を結合量子ドットから2重量子リ			
	ングへ切り替えて、電子物性を詳しく調べた。顕微レーザー分光法を駆使して単			
	一の2重量子リングの発光スペクトルを測定し,有効質量近似による理論計算と			

比較することにより電子状態を解明した。さらに、磁場中顕微分光によって発光 スペクトルの反磁性シフトなどを観測して、励起子アハラノフ・ボーム効果の兆 候を見出すなど、大きな成果を上げた。量子演算については単一量子ドットの励 起子準位を対象として、共鳴レーザーパルス照射下での自然放出光の検出による ラビ振動の観測(1Qビット演算)に世界で初めて成功した。研究計画で「多量 子ビット演算などの高度な非線形光学操作を目指す」とした点については、すで に2台のフェムト秒チタンサファイアレーザーを連結したレーザーパルス同期 装置を準備していて、近々実証実験にとりかかる段階である。結合量子ドットか ら2 重量子リングへ検討対象の変更があったものの. 予定していた研究項目はす べて実施し、かえって当初計画以上にオリジナリティの高い研究成果が得られ た。また、研究グループのメンバーである黒田隆主任研究員の研究提案「単一量 子ドットにおける多光子量子操作」が認められてJSTのさきがけ研究に取り上げ られるなど、関連した外部資金も得て研究計画を実施できた。

論文:3.6件*、プロシーディングス:1.4件*、解説・総説:1.0件*、 招待講演数:4.0件* (*:研究の寄与率を考慮した平成16-17年の値) 特許出願: 6件、登録: 0件、実施許諾: 0件

【評価項目】

コメントおよび評価点

マネジメント

実施体制

(サブテーマ間連係、外 部との共同研究の有効 性)

コメント:

ナノ構造の作製、物性評価、コヒーレント制御に関する3つのサブテーマから |構成されている。それぞれの目標が明確であり、目標達成のための合理的なサブ グループ間の連携も密接に進められおり高く評価できる。

*評価点(10点満点):8

評価基準 9点:研究の効率向上に明確に寄与している

7点:よく考えられている 5点:平均的な体制

3点:もう少し考慮の余地があった 1点:プロジェクト遂行の支障となった

アウトプット

(論文、特許等の直接の

コメント:

2年間という短期間の研究であるが、世界の先端を行く成果が得られ、それに 成果。費用対効果を考慮)|より十分な数の論文が主要なジャーナルに発表されている。また特許出願もなさ れており高く評価できる。

*評価点(10点満点):8

9点:質・量共に平均的プロジェクトの水準を大きく上回っている 評価基準

> 7点:平均的水準より優れる 5点:平均的水準 3点: 少ない 1点:問題がある

目標の達成度

効果

その他アウトカム、波及

コメント:

量子ドット基底状態のラビ振動など、当初目標にしていた1Qビットのコヒー レント制御に成功し、目標は十分に達成している。この他、当初計画にはなかっ た2重量子リングの発見とその物性解明も興味深い成果であった。

本研究は、量子コンピュータ、量子ナノ物理に関する独創性の高い内容である ことから、新しい研究分野開拓と、その波及効果が大いに期待できる。今後は多 ビット化への展開が望まれる。

*評価点(10点満点):8

評価基準 9点:一つの分野を形成した

> 7点:目標は十分達成され、当該分野に影響を与えた 5点:目標はなんとか達成された 1点:目標達成にはほど遠い 3点:目標の部分的な達成

総合評価

コメント:

研究全体に対する総合的 な所見を記入。

また上記設定評価項目に 含まれないその他の評価 ポイントがあれば追加し てコメント。 世界初の2重リングの研究、量子ドットのラビ振動、量子リングのAharonov-Bohm効果といった最先端の研究を、フェーズロックループ制御マイケルソン干渉計等の技術的に高度な装置の開発を基礎として成し遂げている。1Qビットに関しては十分な成果が得られ、これらの成果を中心として、第2期中期計画では新たに量子ドットセンターが設立されるとのことであるが、第2期中期計画では多ビット化の実現を期待している。この他、研究成果を基にして多数の外部資金の獲得にも成功しており高く評価できる。

*総合評価点(10点満点):8

評価基準 9点:すべての点において模範的に優れている

7点:総合的に優れている 5点:平均的

3点:期待されたほどではなかった 1点:税金の無駄遣いである

なお評価点は、公表時一般にもわかり易いように、以下のようにS, A, B, Cを併記します。

9,10 S

8 A+

6,7 A

5 A-

3,4 B

 $0 \sim 2$ C

評価点まとめ

マネジメント実施体制 (内外連携)	アウトプット	目標達成度、アウトカム 波及効果	総合評価
A+	A+	A+	A+