International Symposium on

Atomic Switch: Invention, Practical Use and Future Prospects

ABSTRACTS of Presentations &

PUBLICATION LIST related to the atomic switch

March 28, 2017
Meeting Room "SUBARU"
Okura Frontier Hotel Tsukuba
Welcome address

The “atomic switch”, which was invented in 2001 and has been investigated at MANA/NIMS for about 10 years with the support of JST and MEXT and in collaboration with NEC, has come into practical use as the “NEC AtomSW-FPGA”, which will soon be used in robots and space satellites for example. This is because the atomic switch is not only compact and has low power-consumption, but also because it is scarcely influenced by electromagnetic noise and radiation (including cosmic rays).

To celebrate the practical use of the atomic switch, which is a novel nanoelectronics device originating in Japan, we hold a memorial symposium as follows. At the symposium, we will also present information about how the atomic switch has begun to be used for brain-type information processing and for completely novel functional nanodevices. We believe that this symposium will be useful for all the scientists and engineers who are interested in nanoscale devices in relation to AI and IoT. Please participate in this symposium.

私どもが 2001 年に発明し、JST や文部科学省の支援を受け、NEC と共同して、MANA/NIMS において研究を続けてきた「原子スイッチ」が、このたび “NEC AtomSW-FPGA”として実用化され、ロボットや人工衛星などでの利用が目指されています。原子スイッチは、コンパクトで低消費電力であるだけでなく、電磁ノイズや放射線（宇宙線）による誤動作がほとんどないためです。

この機会に、日本発の独創的ナノエレクトロニクス・デバイスである「原子スイッチ」の実用化を祝うと共に、「原子スイッチ」が脳型の情報処理や全く新しい高機能デバイスへと展開し始めている状況を展望するシンポジウムを開催することにしました。AI や IoT に関心のある方には必ずお役に立つと思います。ぜひご参加ください。

Masakazu Aono
Director,
WPI Center for Materials Nanoarchitectonics (MANA),
National Institute for Materials Science (NIMS)
Memorial Symposium for Celebrating the Practical Use of the Atomic Switch

International Symposium on Atomic Switch: Invention, Practical Use and Future Prospect

Date: 28th March, 2017
Venue: Room “SUBARU”, Annex 1F, Okura Frontier Hotel Tsukuba

PROGRAM

March 27th
18:00 - 20:00 Reception (Bar Continental, 11 F, Okura Frontier Hotel Tsukuba)

March 28th
09:00 - 09:30 Registration

Opening (Chair: Tomonobu Nakayama)
09:30 - 09:40 Opening address (Scope of Symposium)
 Masakazu Aono (Director, MANA/NIMS)
09:40 - 09:50 Greeting
 Kazuhito Hashimoto (President of NIMS)
09:50 - 10:00 Greeting
 Motoo Nishihara (Senior Vice President, NEC Corp.)
10:00 - 10:10 Greeting
 Jun’ichi Sone (Senior Fellow, JST)

< Part I > From Invention to Practical Use of the Atomic Switch
(Chair: James K. Gimzewski)

10:10 - 10:50 Invention and Development of the Atomic Switch
 K. Terabe1, T. Hasegawa2, T. Nakayama1, M. Aono1 (1MANA/NIMS, 2Waseda Univ.)

10:50 - 11:30 Pathway to Atomic Switch based Programmable Logic
 T. Sakamoto1, M. Tada1, M. Miyamura1, Y. Tsuji1, R. Nebashi1, A. Morioka1, N. Banno1, K. Okamoto1, N. Iguchi1, H. Hada1, T. Sugibayashi1, K. Terabe2, T. Hasegawa2, M. Aono2 (1NEC Corp., 2MANA/NIMS)

11:30 - 11:55 Atom-Switch FPGA Application for IoT Sensing System in Space
 H. Hihara (NEC Space Technologies, Ltd.)
11:55 - 12:10 Group Photo

12:10 - 13:20 Lunch

13:20 - 13:50 Poster Session with coffee

< Part II > New Developments of the Atomic Switch
(Chair: Kazuya Terabe)

13:50 - 14:30 【Special Lecture】
Nanoscale Electrochemical Studies: How can We Use the Atomic Switch
I. Valov\(^1\,2\), T. Hasegawa\(^3\), S. Tappertzhofen\(^2\), T. Tsuruoka\(^4\),
M. Lübben\(^2\), R. Wasre\(^1\,2\), M. Aono\(^4\) (\(^1\)Research Centre Jülich,
\(^2\)RWTH-Aachen Univ., \(^3\)Waseda Univ., \(^4\)MANA/NIMS)

14:30 - 14:55 Development of Three-terminal Atomic Switches and Related Topics
T. Hasegawa\(^1\), T. Tsuruoka\(^2\), C. Lutz\(^1\,2\), Q. Wang\(^3\), Y. Itoh\(^2\), H. Tanaka\(^4\),
T. Ogawa\(^5\), S. Watanabe\(^6\), S. Yamaguchi\(^6\), M. Aono\(^2\) (\(^1\)Waseda Univ.,
\(^2\)MANA/NIMS, \(^3\)Lanzhou Uiviv., \(^4\)Kyushu. Inst. Tech., \(^5\)Osaka Univ., \(^6\)Univ.
Tokyo)

14:55 - 15:20 Artificial Synapses Realized by Atomic Switch Technology
T. Tsuruoka\(^1\), T. Ohno\(^1\,2\), A. Nayak\(^1\,3\), R. Yang\(^1\,4\), K. Terabe\(^1\),
T. Hasegawa\(^1\,5\), J. K. Gimzewski\(^1\,6\), M. Aono\(^1\) (\(^1\)MANA/NIMS, \(^2\)Tohoku
Univ., \(^3\)IIT-Patna, \(^4\)Huazhong Univ. Sci. Tech., \(^5\)Waseda Univ., \(^6\)UCLA)

15:20 - 15:35 Coffee Break

(Chair: Ilia Valov, Zdenka Kuncic)

15:35 - 16:00 Atom Switches for Neuroarchitectonics
J. K. Gimzewski\(^1\,2\), A. Z. Stieg\(^2\), R. Aguilera\(^2\), K. Scharnhorst\(^2\), E. C.
Demis\(^2\), H. O. Sill\(^2\), E. J. Sandouk\(^2\), A. V. Avizienis\(^2\), M. Aono\(^1\)
(\(^1\)MANA/NIMS, \(^2\)UCLA,)

16:00 - 16:25 Emerging Functionality of Neuromorphically Networked Structures
T. Nakayama\(^1\), R. Higuchi\(^1\), Z. Kuncic\(^2\), Y. Shingaya\(^1\), J. K. Gimzewski\(^1\,3\),
M. Aono\(^1\) (\(^1\)MANA/NIMS, \(^2\)Univ. Sydney, \(^3\)UCLA)

16:25 - 16:50 Atomistic Simulations for Understanding Microscopic Mechanism of Atomic
Switches
S. Watanabe, B. Xiao, W. Li (Univ. Tokyo)

16:50 - 17:15 Atomic Switch Based Decision Making
S. -J. Kim\(^1\), T. Tsuruoka\(^1\), T. Hasegawa\(^2\), M. Aono\(^3\), K. Terabe\(^1\),
M. Aono\(^1\) (\(^1\)MANA/NIMS, \(^2\)Waseda Univ., \(^3\)Tokyo Inst. Tech.)
17:15 - 17:40 *Nanoionic Devices for Physical Property Tuning and Enhancement*

T. Tsuchiya, T. Tsuruoka, K. Terabe, M. Aono (MANA/NIMS)

17:40 - 17:45 *Closing Remarks*

Kazuya Terabe (MANA/NIMS)

18:00 - 20:00 *Banquet*

(Banquet Hall “SUBARU”, Annex 1F, Okura Frontier Hotel Tsukuba)

Steering Committee

- Gimzewski, James K. [Chair]
- Kuroki, Toshio
- Waser, Rainer
- Williams, Stan
- Kishi, Teruo
- Sone, Jun’ichi
- Welland, Mark
- Yamaguchi, Shu

Organizing Committee

- Aono, Masakazu [Chair]
- Hasegawa, Tsuyoshi
- Sakamoto, Toshitsugu
- Terabe, Kazuya
- Tsuchiya, Takashi
- Waser, Rainer
- Gimzewski, James K.
- Nakayama, Tomonobu
- Sugibayashi, Tadahiko
- Tsuruoka, Tohru
- Valov, Ilia

Local Organizing Committee

- Aono, Masakazu
- Terabe, Kazuya [Co-chair]
- Tsuchiya, Takashi
- Nakayama, Tomonobu [Co-chair]
- Tsuruoka, Tohru
- Kobayashi, Michiko
Poster Session

P01 Development of Video Encoding using Atomic-Switch Based FPGA
 T. Sakamoto¹, M. Tada¹, M. Miyamura¹, X. Bai¹, Y. Tsuji¹, R. Nebashi¹, A. Morioka¹, N. Banno¹, K. Okamoto¹, N. Iguchi¹, H. Hada¹, T. Sugibayashi¹ (¹NEC Corp.)

P02 An Evaluation of Single Event Effect by Heavy Ion Irradiation on Atom Switch ROM/FPGA
 K. Takeuchi¹, M. Tada², T. Sakamoto², H. Shindo¹, S. Kuboyama¹, A. Takeyama³, K. Suzuki¹ (¹JAXA, ²NEC Corp., ³QST)

P03 Solid-Polymer-Electrolyte-Based Atomic Switches
 T. Tsuruoka¹, K. Krishnan¹,², S. R. Mohapatra¹,³, S. Wu¹,⁴, M. Aono¹ (¹MANA/NIMS, ²CSIR-CERI, ³NIT-Silchar, ⁴QHTZ)

P04 Psychological Memorization Model Demonstrated by Atomic Switches
 T. Ohno¹,², T. Hasegawa²,³, T. Tsuruoka³, K. Terabe³, A. Nayak²,⁴, J. K. Gimzewski²,⁵, M. Aono³ (¹Tohoku University, ²MANA/NIMS, ³Waseda Univ., ⁴IIT-Patra, ⁵CNST/UCLA)

P05 Neuromorphic Atomic Switch Networks for Natural Computing
 K. Scharmhorst¹, R. Aguilera¹, A. Stieg¹, J. K. Gimzewski¹,² (¹UCLA, ²MANA/NIMS)

P06 Investigation of Dynamic Phenomena in Polymer-coated Ag Nanowire Network
 R. Higuchi¹, Y. Shingaya¹, M. Li¹, Z. Kuncie², J. K. Gimzewski¹,³, M. Aono¹, T. Nakayama¹,² (¹MANA/NIMS, ²Univ. Sydney, ³CNSI/UCLA, ⁴Univ. Tsukuba)

P07 Conduction through Thermosensitive Networks
 R. G. Shrestra¹, R. Higuchi¹, Y. Shingaya¹, S. Samitsu², T. Nakayama¹ (¹MANA/NIMS, ²PMU/NIMS)

P08 Functionalized PANI Network Conductor towards Future Computation
 L. Qiao¹,², R. Higuchi², Y. Shingaya², Y. Kato², K. Tanaka², T. Nakayama¹,² (¹Univ. Tsukuba, ²MANA/NIMS)

P09 MP-AFM Measurement of Metal and Polymer Nanowires as Basic Components of Neuromorphic Network System
 Y. Shingaya¹, R. Higuchi¹, M. Li¹, S. Endo², O. Kubo², M. Aono¹, T. Nakayama¹,³ (¹MANA/NIMS, ²Osaka Univ., ³Univ. Tsukuba)

P10 ‘Tug of War’ Devices for Interconnection of Artificial Synapses
 C. Lutz¹,², T. Hasegawa¹, T. Chikyo² (¹Waseda Univ., ²MANA/NIMS)

P11 Study of Atom Diffusion in Amorphous Structure with Neural Network Potentials
 W. Li¹, Y. Ando², E. Minamitani¹, S. Watanabe¹,³ (¹Univ. Tokyo, ²CD-FMat/AIST,
Effects of the Composition of Ta$_2$O$_5$ Films on the Resistive Switching Properties of Ta$_2$O$_5$-Based Atomic Switches

C. Mannequin1,2, T. Tsuruoka2, T. Hasegawa2,3, M. Aono2 (1Univ. Tsukuba, 2MANA/NIMS, 3Waseda Univ.)

Electrical-Pulse-Induced Resistivity Modulation in Pt/TiO$_2$/Pt Multilayer Device Relevant to Nanoionic-Based Neuromorphic Function

K. Kawamura1, T. Tsuchiya2, K. Terabe2, T. Higuchi1 (1Tokyo Univ. Sci., 2MANA/NIMS)

Surface Proton Conduction on Yttria-stabilized Zirconia Thin Film for Nanoionic Devices Application

M. Takayanagi1, T. Tsuchiya2, M. Minohara3, M. Kobayashi3, K. Horiba3, H. Kumigashira3, T. Higuchi1 (1Tokyo Univ. Sci., 2MANA/NIMS, 3KEK)

Electrical Property of Nd$_{0.6}$Sr$_{0.4}$FeO$_3$ Thin Film Deposited by RF Magnetron Sputtering Method

W. Namiki1, T. Tsuchiya2, M. Minohara3, M. Kobayashi3, K. Horiba3, H. Kumigashira3, T. Higuchi1 (1Tokyo Univ. Sci., 2MANA/NIMS)
International Symposium on
Atomic Switch 2017

Opening
Opening address

Name (Title): Masakazu Aono
(Director, MANA, NIMS)

Affiliation: National Institute for Materials Science (NIMS)

Address: 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: AONO.Masakazu@nims.go.jp

Home Page: http://www.nims.go.jp/mana/about/director.html

Greeting

Name (Title): Kazuhito Hashimoto
(President, NIMS)

Affiliation: National Institute for Materials Science (NIMS)

Address: 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

Email: president@nims.go.jp

Home Page: http://www.nims.go.jp

Greeting

Name (Title): Motoo Nishihara
(Senior Vice President, NEC Corp.)

Affiliation: NEC Corp.

Address: 5-7-1 Shiba, Minato-ku, Tokyo 108-0014, Japan

Email:

Home Page: http://jpn.nec.com

Greeting

Name (Title): Jun’ichi Sone
(Senior Fellow, JST)

Affiliation: Japan Science and Technology Agency (JST)

Address: 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Email: junichi.sone@jst.go.jp

Home Page: https://www.jst.go.jp
Presentation Title:
Invention and Development of the Atomic Switch

Authors:
°Kazuya Terabe1, Tsuyoshi Hasegawa1,2, Tomonobu Nayakama1, and Masakazu Aono1

Affiliation:
1. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2. Department of Applied Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan

Email: TERABE.Kazuya@nims.go.jp

Abstract:
A great number of electronics devices are used in the information and communications equipment, and upgrading of that equipment largely depends on improving the performance of semiconductor devices, which are operated by the movement of electrons within semiconductors. Though semiconductor devices have seen remarkable progress with technological development in miniaturization and integration, it is currently feared that the progress is beginning to slow. Thus, it is also becoming essential to create devices that operate on a completely new set of principles.

Our invention of an atomic switch with a novel operating principle, using the movement of atom (ion), was serendipitous in a sense. In earlier studies, we were working on an experiment where atoms were arranged into lines in order to draw on a substrate by generating a high electric field at a tip of a scanning tunneling microscope’s (STM) probe made of an electron and ion mixed conductor materials, and dripping metal atoms one at a time from the tip. In doing so, without forethought, we found that by controlling the voltage applied to the STM tip, a protrusion at that tip, consisting of a small amount of metallic atoms, could be grown and shrunk. Fig. 1 shows the growth and shrinkage of Ag atom protrusion at the STM tip of electron and Ag ion mixed conductor Ag2S. The Ag protrusion at the tip grew and shrunk reversibly when the polarity of V_s and magnitude of I_t were changed, in which V_s and I_t are a sample bias and tunneling current, respectively. The conditions of V_s and I_t were changed in the order of 1, 2, 1, 3, 4, and 3, and this sequence was repeated three times in Fig.1.1

We immediately came up with the idea of using these reversible processes for atomic-scale electrical switching. In order to examine the atomic switch idea, we cut off the feedback function of the STM so as to keep the height of the STM tip relative to the substrate constant, and observed a switching hysteresis. Based on this discovery of the interesting solid electrochemical phenomena on the atomic scale, thereafter, we have found various unique properties and valuable functions in developed atomic switches.2-4

Fig. 1 Reversible growth and shrinkage of the Ag protrusion at an electron and Ag-ion mixed conductor STM tip.
Presentation Title:
Pathway to Atomic Switch Based Programmable Logic

Authors:
°T. Sakamoto¹, M. Tada¹, M. Miyamura¹, X. Bai¹, Y. Tsuji¹, R. Nebashi¹, A. Morioka¹, N. Banno¹, K. Okamoto¹, N. Iguchi¹, H. Hada¹, T. Sugibayashi¹, K. Terabe², T. Hasegawa², and M. Aono²

Affiliation:
1. System Platform Research Laboratories, NEC Corp., Tsukuba 305-8501, Japan
2. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: t-sakamoto@dp.jp.nec.com

Abstract:
We have been developing atomic-switch [1] based FPGA [2]. Atom switch with a large ON/OFF conductance ratio, non-volatility, and small feature size is suitable for configuration switch in FPGA. The novel switch is composed of the solid electrolyte sandwiched between Cu and Ru. The conduction bridge is formed in the solid electrolyte by applied a positive voltage to the Cu electrode, resulting in the low resistive state (Fig. 1(a)).

ASIC has the highest performance and lowest power consumption but it has very low flexibility. Compared with ASIC, FPGA has better flexibility. Compared with CPU, FPGA has better energy efficiency. Atomic-switch based FPGA achieves both high-energy efficiency and high performance (Fig. 1(b)).

Fig. 1 (a) SRAM and pass transistor in conventional FPGA is replaced by resistive switch (Atomic switch), resulting in reducing circuit area and power consumption. (b) Various Si chips in terms of energy efficiency and versatility.

References:
Presentation Title: Atom-Switch FPGA Application for IoT Sensing System in Space

Authors: H. Hihara

Affiliation: 1. NEC Space Technologies, Ltd.

Abstract:

The Internet of Things (IoT) has been envisioned as a fundamental infrastructure that will bring about useful information and knowledge resulting in efficiency and growth in industry and improved comfort and safety in human life. Sensors, networks, and information technology (IT) are designated as key technology elements to make IoT a practical knowledge framework. IoT is to be used for supporting so-called lifeline as energy supply, water works, traffic control, logistics, broadcasting, and telecommunication. Everything is to be connected through Machine to Machine (M2M) network anytime and anywhere to realize the IoT framework.

Space systems, such as satellites, can be identified as sensor nodes and relay nodes among IoT applications. It is integrated with ground systems, and wide range of collected information must be transmitted through the limited transmission capacity of existing network. Therefore, the extraction of useful data through signal processing using embedded processors on satellites is essential as shown in Fig. 1. Re-writable Field Programmable Gate Arrays (FPGAs) without configuration memories, as atom-switch FPGAs, are required for the purpose, because the most

![Fig. 1 IoT using embedded signal processors.[1]](image-url)
demanded characteristics on satellites is a continuous operation in harsh environment with background radiation on orbit, and thus soft-error free FPGAs as atom-switch FPGAs are most promising devices for satellite applications.

Low power consumption is another demanding characteristics for realizing less heat dissipation indispensable to space applications operating in exoatmosphere, because heat dissipation path is limited within chassis conduction. We found that atom-switch FPGAs also have idealistic characteristics for this issue.

Presentation Title:
Nanoscale Electrochemical Studies: How can We Use the Atomic Switch

Authors:
°Ilia Valov1, Tsuyoshi Hasegawa2, Stefan Tappertzhofen1, Tohru Tsuruoka2, Michael Lübben1, Rainer Waser1, and Masakazu Aono2

Affiliation:
1. Research Centre Juelich, PGI-7 (Electronic Materials), 52425 Juelich, Germany
2. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: i.valov@fz-juelich.de

Abstract:
Understanding and controlling the processes of transfer of mass and charge at the nano- and sub-nanoscale is of primary importance for modern science and technology in fields such as nanoelectronics, nanoionics, energy conversion and storage, information technology etc. However, approaching atomic dimensions, material instabilities and instrumentation limits restrict the resolution and hinder more detailed insight. A significant step ahead in that respect has been initiated by studies on resistive switching memories and the invention of the atomic switch.

![Fig. 1 Atomic switch used for ultra-high resolved electrochemical studies](image)

In this contribution the use of the atomic switch for nanoscale, and even atomically resolved electrochemical studies will be demonstrated. It will be shown that properties of matter changes and the border between definitions for insulators, semiconductors and electrolytes blurs at low dimensions and even high-k materials such as SiO2, Ta2O5, HfO2 etc. can conduct ions at the nanoscale. Case samples of potentiostatic and potentiodynamic electrochemical measurements using atomic switch will be highlighted. The role of the electrode materials and their electrocatalytic activity will be discussed. It will be shown that STM in atomic switch approach allows to neglect the electronic conductivity of the samples and enables the highest mass and charge resolution measurements.
Presentation Title:
Development of Three-terminal Atomic Switches and Related Topics

Authors:
°Tsuyoshi Hasegawa1,2, Tohru Tsuruoka2, Carolin Lutz1, Qi Wang2, Yaomi Itoh2, Hirofumi Tanaka3, Takuji Ogawa4, Satoshi Watanabe5, Shu Yamaguchi5, and Masakazu Aono2

Affiliation:
1. School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
2. MANA, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
3. Graduate school of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
4. Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043, Japan
5. Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

Email: thasega@waseda.jp

Abstract:
Atomic switch has supra advantages over other nonvolatile switches, such as its higher on/off ratio, very low resistance in its on state, and the scalability to the atomic scale. The novel characteristics brought us to use the device as a programmable switch in FPGAs, as introduced by Sakamoto et al. in this symposium.

When we compare the two-terminal structure and the three-terminal structure, the three-terminal structure has an advantage over two-terminal structures in logic applications. Since that the electrical connection and disconnection in the three-terminal structure is controlled by a gate that is electrically separated by a signal line, i.e., a source and a drain, power consumption can be much decreased than that of the two-terminal atomic switches. Although the cell (switch) size becomes larger than that of two-terminal atomic switches, this advantage brought us to develop several three-terminal atomic switches. Figure 1 shows one type of the three-terminal atomic switches, which we call ‘Atom Transistor’.1,2 As expected, it operates with very much small power consumption both in the standby mode and the operating mode. In the operation, it is required to limit the amount of metal cations diffusing to the channel region. Although it was the most difficult challenge in the development, we solved the issue. Moreover, we developed another type of three-terminal atomic switch based on the understanding.3,4 In the presentation, we will introduce the history and the present status of these three-terminal atomic switches.

Fig. 1 Schematics of the atom transistor
Presentation Title:
Artificial Synapses Realized by Atomic Switch Technology

Authors:
°Tohru Tsuruoka, Takeo Ohno°, Alpana Nayak°, Rui Yang°, Kazuya Terabe°, Tsuyoshi Hasegawa°, James K. Gimzewski°, and Masakazu Aono°

Affiliation:
1. MANA, NIMS, 1-1 Namiki, Tsukuba, Japan
2. AIMR, Tohoku University, 2-1-1 Katahira, Sendai, Japan
3. IIT-Patna, Amhara Road, Bihta, Patna, Bihar, India
4. Huazhong Univ. Sci. Tech., 1037 Luoyu Road, Huhan, China
5. Waseda University, 3-4-1 Okubo, Tokyo, Japan
6. UCLA, 570 Westwood Plaza, CA, USA

Email: TSURUOKA.Tohru@nims.go.jp

Abstract:
In addition to bi-resistive switching, the unique characteristics of the atomic switch are conductance quantization and synaptic behaviors. The atomic switch synaptic plasticity when the device conductance varies depending on the history of the switching events and the bias voltage applied at the time. We demonstrated that sulfide-based gap-type atomic switches could emulate two types of memorization in the human brain through the use of input pulse repetition time: short-term memory (STM) and long-term memory (LTM) modes [3]. This plasticity is influenced by the presence of air or moisture and depends on temperature [4]. An Ag-Ta₂O₅/Pt atomic switch also exhibits the STM and LTM behaviors under the application of input voltage pulses with varied repetition times [5]. The transition between STM and LTM over a wide time scale can also be achieved using the transport of oxygen vacancies in a Pt/WO₃-x/Pt device [5].

Our results show that individual atomic switches enable a new functional element suitable for the design of neural systems that can work without the poorly scalable software and preprogramming employed in current CMOS-based neural networks. These artificial synapses will contribute to the achievement of next-generation neural computing systems.

![Fig. 1](image_url)

Fig. 1 (a) Atomic switches work as an artificial synapse. (b) An Ag-Ta₂O₅/Pt device shows LTM under high input repetition rates. (c) A Pt/WO₃-x/Pt device shows the transition from STM to LTM depending on input strength.

Presentation Title: Atom Switches for Neuroarchitectonics

Authors: James K. Gimzewski¹,²,³, Adam Z. Stieg², Renato Aguilera³, Kelsay Scharnhorst³, Eleanor C. Demis³, Henry O. Sillin³, Eric J. Sandouk³, Audrius V. Avizienis³, and Masakazu Aono¹

Affiliation: 1. MANA, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 2. California NanoSystems Institute (CNSI), UCLA, 570 Westwood Plaza, Los Angeles, CA 90095, USA 3. Department of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA

Email: gimzewski@cnsi.ucla.edu

Abstract: Atomic switch-based devices are a base configuration for neuromorphic logic and memory. They are CMOS compatible and are comprised of directed self-assembled wiring with nanoscale synaptic-like junctions¹. The atomic switch is an electroionic circuit exhibiting multi-state switching and volatile memory capabilities similar to biological synapses through a bias-driven filamentary switching mechanism. The Atomic Switch Network (ASN) is a radically divergent architecture in which the individual atomic switches are interconnected in a network inspired by neuronal mechanisms in the brain²,³. Operation of atomic switch networks leads to a class of emergent behaviors (constantly reconfiguring energetic potential, power law dynamics, and distributed spatiotemporal switching events). The distributed dynamics of the ASN make it a hardware candidate for reservoir computing, (RC). We will discuss ASN’s from the single switch level up to network operation for RC. Finally we will provide an outlook of their operation as hybrid devices and also as three-dimensional brain-like embodiments.

Fig. 1 (Left) Schematic representation of a single atomic switch. (Center) Scanning electron microscope image of an ASN device comprising individual atomic switch elements embedded within a network of highly interconnected silver wires. (Right) Self-organized nanowires integrated into a CMOS-compatible device platform with 120 electrodes.

References:
Emerging Functionality of Neuromorphic Networked Structures

As an emerging functionality of neuromorphically networked structures, we report associative memorization, which is considered to be a promising functionality towards future computation. In this presentation, we discuss three important features of the networks, such as a “small-world” property, existence of long-term/short-term memorization behaviors and 1/f characteristics, through our nano- and macro-scale electrical measurements, and finally leading us to propose brain-type computation for future information technology.

We prepared inorganic/organic neuromorphic nanowire networks of doped poly-aniline nanowires (PANI-NWs) and silver nanowires (Ag-NWs) by wet-chemical methods and by drop-casting or spin-coating them onto insulating substrates such as mica and SiO2. In the case of Ag nanowires, about 1-nm thick insulating layer of polyvinylpyrrolidone (PVP) was formed over the surface of each nanowire. Then, we used multiple-probe scanning probe microscope (MP-SPM) [1] and related techniques to measure electrical properties of the PANI- and Ag-NW networks.

The resistances measured for the PANI nanowire networks indicated “small-world” characteristics of the networks [2]. The Ag nanowire network was highly resistive (OFF-state) because the thin insulating PVP layer prevented metal to metal contacts between Ag nanowires. Interestingly, the resistance of the Ag-NW network was orders of magnitude lowered by an application of appropriate voltages across the network. The low-resistance state (ON-state) returned to the OFF-state after some retention time, indicating the network itself can memorize information to some extent. Also, the Ag nanowire networks show 1/f fluctuation as a result of ON-OFF switching phenomena and dynamic fluctuation of current paths as confirmed by both experiments and simulations. We propose and demonstrate that the above features can be devised to associative memory devices for future computation.

References:
Presentation Title:
Atomistic Simulations for Understanding Microscopic Mechanism of Atomic Switch

Authors:
°Satoshi Watanabe¹,², Bo Xiao¹,³, and Wenwen Li¹

Affiliation:
1. Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2. Center for Materials Research by Information Integration (CMI⁵), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
3. School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China

Email: watanabe@cello.t.u-toyko.ac.jp

Abstract:

We performed simulations aiming at obtaining atomistic understanding on the behaviors of atomic switches. As an example, we examined Cu/amorphous-Ta₂O₅/Pt heterostructure [1]. Simulations within the density functional theory (DFT) reveals that single Cu chains in Ta₂O₅ cannot work as conductive filaments (CFs), while Cu nanowires with a diameter of three atoms or larger can work as CFs. The stability of the Cu nanowires has been checked by ab initio molecular dynamics. We also discuss the difference in the atomistic features between Cu/Ta₂O₅ and Pt/Ta₂O₅ interfaces: In the former, considerable number of interface Cu atoms tend to migrate to the amorphous Ta₂O₅ layer, while similar behavior is not seen in the latter [2].

In addition, we describe our attempt to construct simplified neural network (NN) interatomic potentials [3] for simulations of Cu migration behavior in amorphous-Ta₂O₅ with achieving computation speed and reliability simultaneously. The structures and data for the NN training are obtained using DFT. The pathways and barrier energies for Cu diffusion calculated using the NN potential agree well with those obtained from DFT calculations [4]. This part of the present works was partly supported by the Support Program for Starting up Innovation hub from Japan Science and Technology Agency (JST), and CREST-JST, Japan.

References:

Fig. 1 (Left) Schematics of Cu conductive filaments obtained in our simulations. (Right) Corresponding local density of states At the Fermi level.
Presentation Title:
Atomic Switch Based Decision Making

Authors:
°Song-Ju Kim¹, Tohru Tsuruoka¹, Tsuyoshi Hasegawa¹², Masashi Aono³⁴, Kazuya Terabe¹, and Masakazu Aono¹

Affiliation:
1. MANA, NIMS, Ibaraki 305-0044, Japan
2. Department of Applied Physics, Waseda University, Tokyo, 169-8555, Japan
3. Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152–8550, Japan
4. PRESTO JST, Saitama 332-0012, Japan

Email: KIM.Songju@nims.go.jp

Abstract:
We considered a popular decision-making problem studied in the context of reinforcement learning, the multi-armed bandit problem (MAB); the problem of finding, as accurately and quickly as possible, the most profitable option from a set of options that gives stochastic rewards. These decisions are made as dictated by each volume of precipitated metal atoms, which is moved in a manner similar to the fluctuations of a rigid body in a tug-of-war game.

The “tug-of-war (TOW) dynamics” of the atomic switch-based decision maker (ASDM) exhibits higher efficiency than conventional reinforcement-learning algorithms. We show analytical calculations that validate the statistical reasons for the ASDM to produce such high performance, despite its simplicity. The proposed scheme will open up a new direction in physics-based analog-computing paradigms, which will include such things as “intelligent nanodevices” based on self-judgment.

Atomic Switch-based Decision Maker

\[\Delta V_k (j) = R_k (j) - K \]
\[V_k = -(V_0 + \Delta V_k (j)) \]
\[X_i (t | t+1) = Q_i (t) - Q_j (t) + \delta (t) \]
\[Q_k (t) = \sum_{j=1}^{N_k} \Delta V_k (j) \]

References:
Presentation Title:
Nanoionic Devices for Physical Property Tuning and Enhancement

Authors:
°Takashi Tsuchiya¹, Tohru Tsuruoka¹, Kazuya Terabe¹, and Masakazu Aono¹

Affiliation:
1. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: TSUCHIYA.Takashi@nims.go.jp

Abstract:
Nanoionic devices have been developed to generate novel functions overcoming limitations of conventional materials synthesis and semiconductor technology.¹,² Various physical properties can be tuned and enhanced by local ion transport near the solid/solid interface. Two electronic carrier doping methods can be used to achieve extremely high-density electronic carriers: one is electrostatic carrier doping using an electric double layer (EDL); the other is electrochemical carrier doping using a redox reaction. Atomistic restructuring near the solid/solid interface driven by a DC voltage, namely, interface nanoarchitechtonics, has huge potential (Figure 1). For instance, the use of EDL enables high-density carrier doping in potential superconductors, which can hardly accept chemical doping, in order to achieve room-temperature superconductivity. Optical bandgap and photoluminescence can be controlled for various applications including smart windows and biosensors. In situ tuning of magnetic properties is promising for low-power-consumption spintronics.

Fig. 1 Schematic illustration of comparing electronic devices, conventional material synthesis, and nanoionic devices.

References:
P01: Presentation Title:
Demonstration of Video encoding using atomic-switch based FPGA

Authors:
°T. Sakamoto¹, M. Tada¹, M. Miyamura¹, X. Bai¹, Y. Tsuji¹, R. Nebashi¹, A. Morioka¹, N. Banno¹, K. Okamoto¹, N. Iguchi¹, H. Hada¹, and T. Sugibayashi¹

Affiliation:
1. System Platform Research Laboratories, NEC Corp., Tsukuba 305-8501, Japan

Email: t-sakamoto@dp.jp.nec.com

Abstract:
We demonstrate the video encoding using atomic-switch based FPGA. A 64x64 programmable-logic cell array includes a 9.2-Mbit atomic switch as the routing switch and configuration memory of LUT (Fig. 1). Each cell has two 4-input LUT and a total number of LUTs is 8.2k which correspond to 20k-ASIC gate.

The encoding algorithm is implemented on atomic-switch FPGA. We develop a mapping tools, where the configuration data is generated from RTL code of the encoding algorithm. The video data is introduced and encoded in the atomic-switch based FPGA. Then, the encoded stream data is decoded by using PC, showing the video image on the display (Fig. 2). FPGA performs 30 frames/sec of 8bit-gray scale video image with 640x480 pixels.

![Fig. 1 64x64 atomic-switch based FPGA.](image)

![Fig. 2 Demonstration flow.](image)
P02: Presentation Title:
An Evaluation of Single Event Effect by Heavy Ion Irradiation on Atom Switch ROM / FPGA

Authors:
° K. Takeuchi¹, M. Tada², T. Sakamoto², H. Shindo¹, S. Kuboyama¹, A. Takeyama³, T. Ohshima³, and K. Suzuki¹

Affiliation:
1. Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
2. System Platform Research Laboratories, NEC Corp., Tsukuba, Japan
3. National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan

Email: takeuchi.kozo@jaxa.jp

Abstract:
“Normally-off computing” featuring a next generation non-volatile memory, which enables to shut the power down whenever not being used, is one of the most promising methodologies to reduce the power consumption in LSI and electronic devices [1]. In this work, we investigate a radiation tolerance of the new memory to achieve “Normally-off computing” in aerospace. NanoBridge (a.k.a. Atom switch) as the nonvolatile memory/switch is subject to be irradiated in a radiation facility, and SEU cross-section against high LET heavy ion was evaluated.

The radiation tolerance of both Atom switch ROM and CAS (complementary atom switch) FPGA were evaluated by using the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) in the National Institutes for Quantum and Radiological Science and Technology (QST). Atom switch ROM and CAS FPGA were initially developed by LEAP (Low-power electronics Association & Project) and now NEC continues to develop them as NanoBridge®. The chips were irradiated by Xe ion. LET (Linear energy transfer) of Xe was calculated to be 68.9 [MeV/(mg/cm²)] at Si surface [2].

No SEU (Single Event Upset or bit flip) was observed through experiment. Atom switch was programmed for either ON or OFF state and validated before and after the radiation test by LSI tester. Since actual cell area of Atom switch is 1.5×10⁻¹¹ [cm²], about 19 or 122 particles were expected to hit somewhere in Atom switches on ROM or FPGA respectively. Figure 1 shows estimated SEU cross section against Xe ion which has 69.8 [MeV/(mg/cm²)] in LET. In-house Cf-252 data [3] was also plotted in 30 [MeV/(mg/cm²)] in Fig. 1. It was revealed that SEU cross sections against heavy ions are much smaller than the Atom switch cell itself irrespective of voltage conditions or cell states.

<table>
<thead>
<tr>
<th>LET [MeV/(mg/cm²)]</th>
<th>Estimated SEU Cross-section [cm²/bit]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10⁻¹⁰</td>
</tr>
<tr>
<td>10</td>
<td>10⁻¹¹</td>
</tr>
<tr>
<td>20</td>
<td>10⁻¹²</td>
</tr>
<tr>
<td>30</td>
<td>10⁻¹³</td>
</tr>
</tbody>
</table>

Fig. 1 Estimated SEU cross-section and actual cell area of atom switch
P03: Presentation Title:
Solid-Polymer-Electrolyte-Based Atomic Switches

Authors:
°Tohru Tsuruoka¹, Karthik Krishnan¹,², Saumya R. Mohapatra¹,³, Shouming Wu¹,⁴, and Masakazu Aono¹

Affiliation:
1. MANA, NIMS, 1-1 Namiki, Tsukuba, Japan
2. CSIR, Central Electrochemical Research Institute, Karaikudi, India
3. National Institute of Technology - Silchar, Assam, India
4. Quzhou Hi-Tech Industrial Development Zone, Zhejiang, China

Email: TSURUOKA.Tohru@nims.go.jp

Abstract:
We have demonstrated that the atomic switch operation can be realized using a solid polymer electrolyte (SPE). Ag/SPE/Pt devices, in which an Ag-salt incorporated polyethylene oxide (Ag-PEO) film is used as SPE, showed bipolar resistive switching with a high ON/OFF resistance ratio under bias voltage sweeping [1]. The observed switching behavior is found to result from formation and dissolution of an Ag metal filament inside the SPE film, as in the case of inorganic solid-electrolyte-based atomic switches. We subsequently succeeded in fabricating a cross-point structured cell on a plastic substrate using an inkjet-printed Ag-PEO film, and obtained stable switching characteristics when the substrate was bent [2]. This result indicates that the SPE-printed atomic switch could be a promising candidate for flexible switch/memory applications.

Recently, successful in situ optical microscopy and ex situ SEM observations were made of conducting filament growth behavior in a planar structure [3]. It was found that the filament growth is significantly influenced by the properties of the polymer matrix, such as its crystallinity and ionic conductivity, which are determined by the addition of metal salts, and by changing experimental parameters such as the compliance current and the voltage sweep rate. Moreover, highly reproducible conductance quantization was demonstrated in an Ag/PEO/Pt structure, and a comparison between the experimental and theoretical results provides additional insight that allows a fundamental understanding of resistive switching behavior, as well as quantized conductance variations.

Fig. 1 Conductance quantization observed in a PEO-based atomic switch

P04: Presentation Title:
Psychological Memorization Model Demonstrated by Atomic Switches

Authors:
°Takeo Ohno\(^1\),2,4, Tsuyoshi Hasegawa\(^3\),4, Tohru Tsuuroka\(^4\),
Kazuya Terabe\(^4\), Alpana Nayak\(^4\),5, James K. Gimzewski\(^4\),6, and
Masakazu Aono\(^4\)

Affiliation:
1. WPI-AIMR, Tohoku University, Sendai, Japan
2. PRESTO, JST, Kawaguchi, Japan
3. Dep. Applied Physics, Waseda University, Shinjuku, Japan
4. MANA, NIMS, Tsukuba, Japan
5. Dep. Physics, Indian Institute of Technology-Patna, India
6. California NanoSystems Institute, UCLA, Los Angeles, USA

Email: t-ohno@wpi-aimr.tohoku.ac.jp

Abstract:
Atomic switch is generally known as nanoionics switching memory devices that operate by controlling the movement of metallic cations/atoms and their reduction/oxidation processes to make conductive paths. At the beginning stage of this research, an ON/OFF switching operation with quantized conductance was reported [1]. After that, we have found that atomic switches possess novel characteristics, such as learning ability depending on the history of input signals [2,3] and time-dependent operation similar to that of a biological synapse [4–6]. In addition, several fascinating behaviors, psychological human memories, have been demonstrated by atomic switches. The atomic switch exhibits time-dependent electrical conductance, which enables a formation of the human memory such as sensory memory, short-term memory and long-term memory [4,7]. On the basis of these results, multi-store memorization model and forgetting curve of human memory in psychology were demonstrated. These novel behaviors of atomic switches will enable the development of beyond von-Neumann architecture. Recently, in order to improve the psychological and neuromorphic operation, we are fabricating a gapless-type atomic switch with a nanometer-thick metallic oxide film as an ionic conductor [8].

![Fig. 1](https://example.com/Fig1.png)

Fig. 1 (left) The psychological model of human memory proposed by Atkinson and Shiffrin. (right) Simplified memorization model in the atomic switch, which was inspired by the multistore model.

P05: Presentation Title:
Neuromorphic Atomic Switch Networks for Natural Computing

Authors:
Kelsey Scharnhorst¹, Renato Aguilera¹, °Adam Stieg²,³, and James Gimzewski¹,²,³

Affiliation:
1. Department of Chemistry and Biochemistry, UCLA, 607 Charles E Young Dr E, 90095, Los Angeles, CA, USA
2. California NanoSystems Institute (CNSI), UCLA, 570 Westwood Plaza, Building 114, 90095, Los Angeles, CA, USA
3. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: stieg@cnsi.ucla.edu

Abstract:
Attempts to realize a low-power, dynamically complex system for computation become imperative as the limits of CMOS technology are approached. Biological brains exist as an inspiring natural system that hold enormous computational power via information processing, storage and logic while only requiring small amounts of energy. Utilizing nanoarchitectonics, or a mixture of top-down and bottom-up methods, we fabricate highly interconnected atomic switch networks (ASNs) that structurally resemble neuronal networks (Figure 1)¹². Individual elements consist of a metal insulator metal (MIM) junction that switches ON/OFF with applied bias. These purpose-built systems exhibit the collective interaction of nonlinear circuit elements with one another, leading to behaviors more complex than those of individual elements.³ Emergent behaviors include spatially and temporally distributed switching, long and short term memory, and nonlinear transformation of information into higher dimensional space. These emergent behaviors make ASNs suitable for alternative natural computing paradigms, or computing inspired by nature.⁴ Specifically, our group specializes in the experimental implementation of reservoir computation using the ASN as a complex physical platform for this paradigm.⁵

References:
P06: Presentation Title:
Investigation of dynamic phenomena in polymer-coated Ag nanowire network

Authors:
°Rintaro Higuchi¹, Yoshitaka Shingaya¹, Ming Li¹, Zdenka Kuncic², James K. Gimzewski¹,³, Masakazu Aono¹, and Tomonobu Nakayama¹,⁴

Affiliation:
1. WPI-MANA/NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2. University of Sydney, Camperdown, NSW 2006, Australia
3. CNSI/UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA
4. University of Tsukuba, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: HIGUCHI.Rintaro@nims.go.jp

Abstract:
Neuromorphic circuits composed of electronic devices are required to realize brain-like information processing such as learning and recognition which are observed in a biological system. “Atomic switches” have attracted attention as the materials for mimicking the functions of synapses.[1,2] Recently atomic switch networks have been studied for generating the neuromorphic structure and function by interconnecting numerous atomic switches each other.[3] However the phenomena occurring in the network have yet to be revealed. In this study, we analyze the fluctuation observed in the polymer-coated Ag nanowire (pc-AgNW) network, one of the atomic switch networks, for understanding the network dynamics.

Scanning electron microscopy (SEM) revealed that AgNWs formed a random network structure on the substrate (Fig. 1a). The spontaneous fluctuation in output current was observed when the constant voltage was applied to pc-AgNW network. Figure 1b shows a typical power spectral density (PSD) of current signal obtained by fast Fourier transform. The PSD followed the inverse of frequency, which behavior is well-known as 1/f noise. It was found that the exponent of 1/f (slope of PSD) changes with the conductance of network, and expected that this behavior should correlate to the network dynamics.

Fig. 1 (a) SEM image of AgNW network. The inset shows optical micrograph of double probes and sample. Scale bar = 10 mm. (b) PSD of measured current.

References:
P07: Presentation Title:
Conduction through Thermosensitive Networks

Authors:
°Rekha Goswami Shrestha¹, Rintaro Higuchi¹, Yoshitaka Shingaya¹, Sadaaki Samitsu², and Tomonobu Nakayama¹

Affiliation:
1. Nano Functionality Integration Group, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2. Separation Functional Materials Group, Polymer Materials Unit, Advanced Key Technologies Division, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: Goswami.Shrestharekha@nims.go.jp

Abstract:
A gel formed in surfactant mixture possesses entangled networks. An incorporation of polymer into this gel retains these entangled networks. This incorporation of polymer in surfactant mixture enhances rheological properties of networks formed by surfactant mixtures only: like viscosity, elasticity and relaxation time as confirmed by rheological measurements. The rheological property of both gels is dependent on concentration of components, temperature. The polymer-incorporated gel possesses enhanced conducting properties. Measurements show that the conductivity is sensitive to temperature, concentration of components. Interesting temperature dependent potential and current distribution pattern were observed through the network in the matrix of gel. These temperature dependent pattern were assigned to the temperature induced structural transformation in the gel.

![Conducting gel](image)

Fig. 1 Self-Standing Conducting Gel (above), and TEM images of the gel at different temperatures (below).
P08: Presentation Title:
Functionalized PANI Network Conductor towards Future Computation

Authors:
°Li Qiao¹,², Rintaro Higuchi², Yoshitaka Shigaya², Yasuko Kato², Keiko Tanaka¹, and Tomonobu Nakayama¹,²

Affiliation:
1. University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
2. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: LI.qiao@nims.go.jp

Abstract:
The memristive resistor has been a long time candidate for the artificial neural network as it has similar short-term plasticity and long-term potentiation as neuro synapse¹. Recent works on resistive switching access memory² give the confidence to achieve computation on the memristive device. Most efforts have been worked on regular resistor network which needs complex lithographic technology². Here we propose a simple approach with functionalized polyaniline complex network. PANI is a widely used conductive polymer which is flexible and stable in the air but does not have switching behavior. 1/f noise measurement shows PANI network is scale-free, which has also been found in our brain³. We firstly functionalized PANI with gold nanoparticles(GNP) to form GNP/PANI fibers. GNP/PANI film has been proved to have bistable switching behavior. Our I-V measurement on GNP/PANI nanofibers shows similar bistable switch behavior. Test of the memristive efficiency on our complex network is on the going.

References:

![Fig. 1](image1.png)
(a) Optical image of sample with two probes. (b) 1/f noise measurement result versus voltage with different probe distances.
P09: Presentation Title:
MP-AFM Measurement of Metal and Polymer Nanowires as Basic Components of Neuromorphic Network System

Authors:
°Yoshitaka Shingaya¹, Rintaro Higuchi¹, Ming Li¹, Satoshi Endo², Osamu Kubo², Masakazu Aono¹, and Tomonobu Nakayama³

Affiliation:
1. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2. Osaka University, Osaka 565-0871, Japan
3. University of Tsukuba, Ibaraki 305-0005, Japan

Email: SHINGAYA.Yoshitaka@nims.go.jp

Abstract:
Neuromorphic network systems are fascinating research target, since they have potential to realize huge parallel computing with low power consumption. We have constructed network system with nanomaterials such as polyaniline nanofibers or polymer coated Ag nanowires (Fig.1) and electrical property of the network system was investigated. To understand electrical property of the network, measurement of electrical property of each component such as single nanowire and single nanowire junction is very important. We applied multiple-probe atomic force microscope (MP-AFM) for that measurement. The MP-AFM which we have developed, has independently driven four probes and four-probe electrical measurement is possible at designated positions with nanoscale precision on a sample. Figure 2 shows overlapped AFM image of Ag nanowires obtained simultaneously with four probes. Four probe electrical measurements were carried out with probe configuration as shown in the figure. Slightly larger electrical resistivity than that of bulk Ag was obtained. Electrical properties of single nanowire junctions were also observed with MP-AFM.

![Fig. 1](image1.png)
Fig. 1 (a) SEM image of Ag nanowire network. (b) SEM image of isolated Ag nanowires on SiO₂ substrate.

![Fig. 2](image2.png)
Fig. 2 AFM image obtained with four probes simultaneously. Four dots show probe position for four probe electrical measurement.
Abstract:

Neuromorphic systems are an alternative for common Von Neumann computers as they should one day achieve a higher processing power on succeeded in demonstrating the function using a solid-state three-terminal device [2], based on a Ag$_2$S gap-type atomic switch, as shown in Fig. 1. In the ‘Tug of War’ operation, the growth of the right Ag filament pulls back the left Ag filament to the center Ag$_2$S electrode. This operation becomes possible when the total volume of Ag in the system is limited. ‘Tug of War’ elements are promising candidates for CMOS-free neuromorphic networks, however the first devices showed problems such as cluster formation within the gap-material. We found that this can be avoided by using electronically conductive materials with low ionic conductivity, such as π-conjugated polymers, independent of being n- or p-type [3]. The main goal of this study is to make these devices ready for implementation in the first CMOS-free networks. For this we optimize the gap-material and sample design and do the first systematic data collection for this new technology. We analyzed different π-conjugated polymers, such as the n-type polymer ActiveInk N2200, and the p-type polymers P3EHT and P3HT showing much lower ion conductivity compared to the previously used PEO+BTOE. P3HT with very low chain length is especially promising for this application. Furthermore, we added a channel structure to our device design to better control the electric field and by this the direction of Ag-filament growth within the gap-material. The device fabrication was mainly done using electron beam lithography and electron beam deposition. The polymers are deposited by spin coating. In the experiments, we applied a bias voltage to the counter electrodes using an IV measurement system and switch the ‘Tug of War’ resistive switch alternatingly between the two counter electrodes as schematically depicted in Fig. 1. The technology will be utilized when ‘Tug of War’ is implemented in first non-hybrid CMOS-free neuromorphic systems.

Fig. 1 Schematic of common atomic switches and the special Tug of War processing. a) A filament grows when a bias is applied. b) In common atomic switches, filaments only shrink when a bias of opposite sign is applied. c) In the Tug of War operation, however, a filament will shrink, when a new filament is grown towards the second counter electrode. This is similar to neuronal connections being weakened when an opposing information is learned.

P11: Presentation Title:
Study of Atom Diffusion in Amorphous Structures with Neural Network Potentials

Authors:
°Wenwen Li¹, Yasunobu Ando², Emi Minamitani¹, and Satoshi Watanabe¹,³

Affiliation:
1. Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2. Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
3. Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

Email: wenwen_li@cello.t.u-tokyo.ac.jp

Abstract:
Theoretical study of metal atom diffusion in amorphous insulator layers is important to understand the mechanism of atomic switches. Reliable computational methods like density functional theory (DFT) are capable of clarifying the atomic diffusion behavior, but require heavy computation.

In this study, we demonstrate that two methods based on the neural network (NN) interatomic potential [1] can be used to study the atomic diffusion in amorphous materials. The first one is the simplified NN potential that focuses on only diffusing atoms. We have investigated the single Cu atom diffusion paths and activation energies in amorphous Ta₂O₅ (a-Ta₂O₅) with this method. The second one is the high-dimensional NN potential [1]. Using this method together with nudged elastic band method and molecular dynamics, we have characterized Li diffusion in amorphous Li₃PO₄. Figures 1 and 2 show examples of calculation results obtained using the first and second methods, respectively. From these figures, we can see that both the first and second NN potential methods give good agreement with DFT calculations.

![Fig. 1 Energy profile along a Cu diffusion path in amorphous Ta₂O₅ calculated by DFT and simplified NN potential.](image)

![Fig. 2 Time evolution of mean square displacement of Li atoms in amorphous Li₃PO₄ in molecular dynamics simulation.](image)

P12: Presentation Title:
Effects of the composition of Ta$_2$O$_5$ films on the resistive switching properties of Ta$_2$O$_5$ based atomic switches

Authors:
°Cedric Mannequin1,2, Tohru Tsuruoka2, Tsuyoshi Hasegawa1,3, and Masakazu Aono2

Affiliation:
1. Graduate School of Pure and Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan.
2. MANA, NIMS, 1-1 Namiki, Tsukuba 305-0044, Japan
3. Department of Applied Physics, Waseda University, 3-4-1 Okuba, Shinjuku-ku, Tokyo, 169-8555, Japan

Email: mannequin.cedric.ga@u.tsukuba.ac.jp

Abstract:
Resistive switching memory based on cation migration in a thin oxide film is considered as a good candidate for next generation, non-volatile memory applications, thanks to their promising properties such as high speed, low power consumption, and high compatibility with CMOS technologies, ensured by a basic metal/insulator/metal (MIM) structure [1]. Because of its similarity to the operating mechanism of ‘gap-type atomic switch’ [2], cation-migration-based MIM cells can be referred to as ‘gapless-type atomic switch’ [3]. Here, we present how the oxide film composition affects the switching behavior, in relation to moisture absorption from the ambient surrounding [4,5] and the cell configurations such as the electrode material.

Cu/Ta$_2$O$_5$/metal cells were investigated, in which the Ta$_2$O$_5$ film was formed by electron-beam deposition (EB) or RF sputtering (SP). XRD and XRR revealed an amorphous nature for both films and a lower film density in the EB film. FT-IR spectra exhibited the existence of peroxy species and a large number of absorbed water in the EB film. XPS analyses revealed oxygen rich composition for both films and a higher O/Ta ratio in the EB film.

Figure 1 shows the variation of the SET (from the OFF state to the ON state) and RESET (form the ON state to the OFF state) voltages with changes in the ambient atmosphere, measured for Cu/Ta$_2$O$_5$/Pt cells. The SET process corresponds to the formation of a Cu filament by precipitation on the Pt electrode, while the RESET process is attributed to the dissolution of the filament due to oxidation of Cu assisted by Joule heating [6]. The decreased SET and RESET voltages in vacuum of the cell with the EB film can be explained by enhanced Cu dissolution and subsequent ion migration in a hydrogen-bond network of the Ta$_2$O$_5$ matrix, resulting from formation of hydroxylated tantalum oxides (Ta-OH) and chemisorption of water on them. This finding is very important in understanding and controlling the performance of oxide-based atomic switches.

P13: Presentation Title:
Electrical-Pulse-Induced Resistivity Modulation in Pt/TiO$_2$-d/Pt Multilayer Device Relevant to Nanoionics-Based Neuromorphic Function

Authors:
°Kinya Kawamura1, Takashi Tsuchiya2, Kazuya Terabe1, and Tohru Higuchi1

Affiliation:
4. Department of Applied Physics, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
5. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: 1515609@ed.tus.ac.jp

Abstract:
Resistivity modulation behavior in Pt/TiO$_2$-d/Pt multilayer devices was investigated relevant to nanoionics-based neuromorphic function. The current relaxation behavior, which corresponds to short-term memorization and long-term memorization in neuromorphic function, was analyzed by using electrical pulses. The memorizations are shown in figure 1 (a) and (b).

In contrast to the huge difference of ionic conductivity for bulk crystal materials of TiO$_2$ and WO$_3$, the difference in the relaxation behavior was small. Rutherford backscattering spectrometry and hydrogen forward scattering spectrometry evidenced that 5.6at% of protons are incorporated in the TiO$_2$ thin film. The result indicated that the neuromorphic function in TiO$_2$-based devices is caused by extrinsic proton transport presumably through grain boundary.

Fig. 1 (a) Short-term and (b) Long-term memorization obtained by using electrical pulse.

References:
P14: Presentation Title:
Surface Proton Conduction on Yttria-Stabilized Zirconia Thin Film for Nanoionic Devices Application

Authors:
°Makoto Takayanagi¹, Takashi Tsuchiya², Makoto Minohara³, Masaki Kobayashi⁵, Koji Horiba³, Hiroshi Kumigashira³, and Tohru Higuchi¹

Affiliation:
6. Department of Applied Physics, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
7. International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
8. Photon Factory, KEK, Tsukuba, Ibaraki 305-0801, Japan

Email: Takayanagi.Makoto@nims.go.jp

Abstract:
We report structural and electrical properties of $\text{Zr}_{0.92}\text{Y}_{0.08}\text{O}_{2-\delta}$ (YSZ) thin film prepared by RF magnetron sputtering. This material is promising solid electrolyte materials with high oxygen ion conduction at high temperature region, which is used for gas sensor, solid oxide fuel cells (SOFCs) and electric double layer transistor.

The conductivity of 80 and 120 nm thicknesses in wet air was higher than that in dry air below 450 °C as shown in Fig. 1. Activation energy in wet air of thin film with thicknesses of 80 and 120 nm were 0.56, 0.52 eV, respectively. The Arrhenius plot of 80 and 120 nm thicknesses in wet air was nonlinear at low temperature region. The conductivity and activation energy of 160 nm thickness was independent of air. Furthermore, wet-annealed YSZ thin film had hydrogen-induced level in the band gap energy region as shown in Fig. 2. These results indicate that the YSZ thin film exhibited proton conduction at the surface state of wet air in the intermediate temperature region from 300 to 450 °C. Observation of hydrogen-induced level from XAS spectrum at the surface state of YSZ is the direct evidence of surface proton conductivity.

![Fig. 1](image1.png) Arrhenius plots of YSZ thin film with thickness of 80 and 120 nm.

![Fig. 2](image2.png) Valence bands and Conduction bands obtained from PES and XAS spectra, respectively.
P15: Presentation Title:
Electrical Property of Nd$_{0.6}$Sr$_{0.4}$FeO$_3$ Thin film Deposited by RF Magnetron Sputtering Method

Authors:
Wataru Namiki1, Takashi Tsuchiya2, Makoto Minohara3, Masaki Kobayashi3, Koji Horiba3, Hiroshi Kumigashira3, and Tohru Higuchi1

Affiliation:
9. Department of Applied Physics, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
10. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
11. Photon Factory, KEK, Tsukuba, Ibaraki 305-0801, Japan

Email: 1516626@ed.tus.ac.jp

Abstract:
La$_{1-x}$Sr$_x$FeO$_3$ (LSFO) thin film is expected for cathode electrode material for solid oxide fuel cells (SOFCs). In the research of electrochemistry, LSFO thin film is well known as electron-oxygen ion mixed conductor. Although the LSFO is promising material for activation at the interface reaction between electrolyte and electrode, the chemical stability has not been proved thus far. It has reported that the chemical stability of Nd$_{0.6}$Sr$_{0.4}$FeO$_3$ (NSFO) is higher than that of LSFO. However, it has not been reported about the conductivity of NSFO thin film. Therefore, we have revealed about the conductivity of NSFO thin film deposited on Al$_2$O$_3$ (0006) substrate.

We have prepared NSFO thin film with various thickness by RF magnetron sputtering method. The film thickness was changed between 42nm and 112nm. The conductivity of the thin film exhibited thermal activation type and increased with increasing film thickness as shown in Fig.1. The activation energy of the thin film was ~0.5 eV. The valence band of the thin film consists of Fe 3d and bonding state hybridized with O 2p (α peak) as shown in Fig.2. The value of the band gap corresponded to that of the activation energy. This result indicates NSFO thin film exhibits mainly electron conduction.

![Fig. 1 Arrhenius plot of NSFO thin film with various thickness.](image1)

![Fig. 2 Band structure of NSFO thin film.](image2)
Achievements of Atomic Switch Research
1. Peer-reviewed papers

2001
1. “Quantum point contact switch realized by solid electrochemical reaction”
 K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono
 ISSN:0919-3405

2. “Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring”
 K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono
 DOI: 10.1063/1.1480887

3. “Formation and disappearance of a nanoscale silver clusters realized by solid electrochemical reaction”
 K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono
 DOI: 10.1063/1.1481775

2002
4. “Nanometer-scale switches using copper sulfide”
 T, Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono
 DOI: 10.1063/1.1572964

2004
5. “A nonvolatile programmable solid electrolyte nanometer switch”
 T, Sakamoto, S. Kaeriyama, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, and M. Aono

2005
6. “Quantized conductance atomic switch”
 K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono
 DOI: 10.1038/nature03190

 C. H. Liang, K. Terabe, T. Hasegawa, R. Negishi, T. Tamura, and M. Aono
 DOI: 10.1002/smll.200500155

8. “A nonvolatile programmable solid-electrolyte nanometer switch”
 S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, and M. Aono
 DOI: 10.1109/JSSC.2004.837244
 T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, S. Kaeriyama, M. Mizuno, K. Terabe, T. Hasegawa, and M. Aono
 DOI: 10.1109/IEDM.2005.1609383

2006
10. “Template synthesis of M/M₂S (M = Ag, Cu) hetero-nanowires by electrochemical technique”
 C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono
 DOI: 10.1016/j.ssi.2006.02.037

11. “Formation and metastable silver nanowire of hexagonal structure and their structure transformation under electron beam irradiation”
 C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono
 DOI: 10.1143/JJAP.45.6046

12. “Fabrication of nanoscale gaps using a combination of self-assemble molecular and electron beam lithographic technique”
 R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa
 DOI: 10.1063/1.2209208

13. “Effects of sulfurization conditions and post deposition annealing treatment on the structural and electrical properties of silver sulfide films”
 M. Kundu, K. Terabe, T. Hasegawa, and M. Aono
 DOI: 10.1063/1.2199067

14. “Switching properties of atomic switch controlled by solid state electrochemical reaction”
 DOI: 10.1143/JJAP.45.L364

15. “Solid-electrolyte nanometer switch”
 N. Banno, T. Sakamoto, N. Iguchi, H. Kawaura, S. Kaeriyama, M. Mizuno, K. Terabe, T. Hasegawa, and M. Aono
 DOI: 10.1093/iete/e89-c.11.1492

16. “Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch”
 N. Banno, T. Sakamoto, T. Hasegawa, K. Terabe, and M. Aono
 DOI: 10.1143/JJAP.45.3666

2007
17. “Control of local ion transport to create unique functional nanodevices based on ionic conductors”
K. Terabe, T. Hasegawa, C. H. Liang, and M. Aono
DOI: 10.1016/j.stam.2007.08.002

18. “Resistance switching of an individual Ag$_2$S/Ag nanowire heterostructure”
C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono
DOI: 10.1088/0957-4484/18/48/485202

19. “Anomalous phase transition and ionic conductivity of AgI nanowire grown using porous alumina”
C. H. Liang, K. Terabe, N. Iyi, T. Hasegawa, and M. Aono
DOI: 10.1063/1.2828141

20. “AgI/Ag heterojunction nanowire: Facile electrochemical synthesis, photoluminescence, and enhanced ionic conductivity”
C. H. Liang, K. Terabe, T. Tsuruoka, M. Osada, T. Hasegawa, and M. Aono
DOI: 10.1002/adfm.200600590

21. “Material dependence of switching speed of atomic switches made from silver sulfide and from copper sulfide”
DOI: 10.1088/1742-6596/61/1/229

22. “Electronic transport in Ta$_2$O$_5$ resistive switch”
T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono
DOI: 10.1063/1.2777170

23. “A Ta$_2$O$_5$ solid-electrolyte switch with improved reliability”
DOI: 10.1109/VLSIT.2007.4339718

24. “Nonequilibrium quantum transport properties of a silver atomic switch”
Z. Wang, T. Kadohira, T. Tada, and S. Watanabe
DOI: 10.1021/nl0711054

2008

25. “Resistance switching in Anodic oxidized amorphous TiO$_2$ films”
C. H. Ling, K. Terabe, T. Hasegawa, and M. Aono
DOI: 10.1143/APEX.1.064002
26. “Structural studies of copper sulfide films: Influence of ambient atmosphere”
 M. Kundu, T. Hasegawa, K. Terabe, K. Yamamoto, and M. Aono
 DOI: 10.1088/1468-6996/9/3/035011

27. “Effect of sulfurization condition on structural and electrical properties of copper sulfide films”
 M. Kundu, T. Hasegawa, K. Terabe, and M. Aono
 DOI: 10.1063/1.2903599

28. “A solid electrolyte nanometer switch”
 T. Sakamoto, S. Kaeriyama, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, and M. Aono
 DOI: 10.1002/eej.20542

29. “Diffusivity of Cu ions in solid electrolyte and its effect on the performance of nanometer-scale switch”
 N. Banno, T. Sakamoto, N. Iguchi, H. Sunamura, K. Terabe, T. Nakayama, and M. Aono
 DOI: 10.1109/TED.2008.2004246

30. “On-state reliability of solid-electrolyte switch”
 N. Banno, T. Sakamoto, S. Fujieda, and M. Aono
 DOI: 10.1109/RELPHY.2008.4558999

31. “Excess-silver-induced bridge formation in a silver sulfide atomic switch”
 Z. Wang, T. Gu, T. Tada, and S. Watanabe
 DOI: 10.1063/1.2963197

2009

32. “Nanoionics switching devices: Atomic switches”
 T. Hasegawa, K. Terabe, T. Sakamoto, and M. Aono
 DOI: 10.1557/mrs2009.215

33. “Nonvolatile solid-electrolyte switch embedded into Cu interconnect”

34. “Cu-ion diffusivity in SiO₂-Ta₂O₅ solid electrolyte and its impact of the yield of resistance switching after BEOL processes”
 DOI: 10.1109/IRPS.2009.5173285
35. “Highly scalable nonvolatile TiO$_x$/TaSiO$_y$ solid-electrolyte crossbar switch integrated in local interconnect for low power reconfigurable logic”
DOI: 10.1109/IEDM.2009.5424287

36. “First-principles simulations on bulk Ta$_2$O$_5$ and Cu/Ta$_2$O$_5$/Pt heterojunction: Electronic structures and transport properties”
T. Gu, Z. Wang, T. Tada, and S. Watanabe
DOI: 10.1063/1.3260244

37. “Nonstoichiometry-induced carrier modification in gapless type atomic switch device using Cu$_2$S mixed conductor”
T. Tsuchiya, Y. Oyama, S. Miyoshi, and S. Yamaguchi
DOI: 10.1143/APEX.2.055002

2010

38. “Toward sub-20nm hybrid nanofabrication by combining the molecular method and electron beam lithography”
DOI: 10.1088/0957-4484/21/49/495304

39. “Rate-limiting processes determining the switching time of a Ag$_2$S atomic switch”
DOI: 10.1021/jz900375a

40. “Learning abilities achieved by a single solid-state atomic switch”
T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J. K. Gimzewski, and M. Aono
DOI: 10.1002/adma.200903680

41. “Photo-assisted formation of atomic switch”
T. Hino, H. Tanaka, T. Hasegawa, M. Aono, and T. Ogawa
DOI: 10.1002/smll.201000472

42. “Forming and switching mechanisms of a cation-migration-based oxide resistive memory”
T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono
DOI: 10.1088/0957-4484/21/42/425205

43. “The atomic switch”
M. Aono and T. Hasegawa
44. “Off-state and turn-on characteristics of solid electrolyte switch”
DOI: 10.1063/1.328577

45. “Structural characterization of amorphous Ta2O5 and SiO2-Ta2O5 used as solid electrolyte for nonvolatile switches”
DOI: 10.1063/1.3488830

46. “Nonvolatile crossbar switch using TiOx/TaSiOy solid electrolyte”
DOI: 10.1109/TED.2010.2051191

47. “Polymer solid-electrolyte (PSE) switch embedded in 90 nm CMOS with forming-free and 10 nsec programming for low power, nonvolatile programmable logic (NPL)”
DOI: 10.1109/IEDM.2010.5703376

48. “Reliable solid-electrolyte crossbar switch for programmable logic”
DOI: 10.1109/VLSIT.2010.5556192

49. “Conductive path formation in the Ta2O5 atomic switch: First-principle analysis”
T. Gu, T. Tada, and S. Watanabe
DOI: 10.1021/nn101410s

50. “Numerical simulation of switching behavior in Cu/Cu2S nanometer-scale switch”
Y. Okajima, Y. Shibuta, T. Tsuchiya, S. Yamaguchi, and T. Suzuki
DOI: 10.1143/APEX.3.065202

2011

51. “Short-term plasticity and long-term potentiation in a single Ag2S inorganic synapse”
T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono
DOI: 10.1038/NMAT3054

52. “Volatile/nonvolatile dual-functional atom transistor”
53. “A polymer-electrolyte-based atomic switch”
S. Wu, T. Tsuruoka, K. Terabe, T. Hasegawa, J. P. Hill, K. Ariga, and M. Aono
DOI: 10.1002/adfm.201001520

54. “Memristive operations demonstrated by gap-type atomic switches”
T. Hasegawa, A. Nayak, T. Ohno, K. Terabe, T. Tsuruoka, J. K. Gimzewski, and M. Aono
DOI: 10.1007/s00339-011-6317-0

55. “Temperature effects on the switching kinetics of a Cu-Ta2O5-based atomic switch”
T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono
Nanotechnology 22 (2011) 254013.
DOI: 10.1088/0957-4484/22/25/254013

56. “Atomic switches: Atomic-movement controlled nanodevices for new types of computing”
T. Hino, T. Hasegawa, K. Terabe, T. Tsuruoka, A. Nayak, T. Ohno, and M. Aono
DOI: 10.1088/1468-6996/12/1/013003

57. “Switching kinetics of a Cu2S gap-type atomic switch”
A. Nayak, T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono
Nanotechnology 22 (2011) 235201.
DOI: 10.1088/0957-4484/22/23/235201

58. “Theoretical investigation of kinetics of a Cu2S-based gap-type atomic switch”
A. Nayak, T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono
DOI: 10.1063/1.3597154

59. “Sensory and short-term memory formations observed in an Ag2S gap-type atomic switch”
T. Ohno, T. Hasegawa, A. Nayak, T. Tsuruoka, J. K. Gimzewski, and M. Aono
DOI: 10.1063/1.3662390

60. “Bulk and surface nucleation processes in Ag2S conductance switches”
M. Morales-Masis, S. J. van den Molen, T. Hasegawa, and J. M. van Ruitenbeek
DOI: 10.1103/PhysRevB.84.115310

61. “Three-terminal nanometer metal switches utilizing solid electrolytes”
H. Kawaura, T. Sakamoto, N. Banno, S. Kaeriyama, M. Mizuno, K. Terabe, T. Hasegawa,
and M. Aono
DOI: 10.1002/ecj.10214
62. “Polymer solid-electrolyte switch embedded on CMOS for nonvolatile crossbar switch”
M. Tada, K. Okamoto, T. Sakamoto, M. Miyamura, N. Banno, and H. Hada
DOI: 10.1109/TED.2011.2169070

63. “On-state reliability of solid-electrolyte switch under pulsed alternating current stress for programmable logic device”
DOI: 10.1143/JJAP.50.074201

64. “Conducting mechanism of atom switch with polymer solid-electrolyte”
DOI: 10.1109/IEDM.2011.6131538

65. “Highly reliable, complementary atom switch (CAS) with low programming voltage embedded in Cu BEOL for nonvolatile programmable logic”
M. Tada, T. Sakamoto, M. Miyamura, N. Banno, K. Okamoto, N. Iguchi, and H. Hada
DOI: 10.1109/IEDM.2011.6131642

66. “Programmable cell array using rewritable solid-electrolyte switch integrated in 90 nm CMOS”
DOI: 10.1109/SSCC.2011.5746296

67. “X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with large extent of oxygen nonstoichiometry”
DOI: 10.1039/clcp21310e

2012
68. “Atomic Switch; the atom/ion movement controlled device for beyond von-Neumann computer”
T. Hasegawa, K. Terabe, T. Tsuruoka, and M. Aono
DOI: 10.1002/adma.201102597

69. “Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches”
T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, and M. Aono
DOI: 10.1002/adfm.201101846

70. “Controlling the synaptic plasticity of a Cu$_2$S atomic switch”
A. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa, J. K. Gimzewski, and M. Aono
71. “Flexible resistive switching memory using inkjet printing of a solid polymer electrolyte”
S. R. Mohapatra, T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono
DOI: 10.1063/1.4727742

72. “Conductance quantization and synaptic behavior of a Ta$_2$O$_5$-based atomic switch”
T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono
DOI: 10.1088/0957-4484/23/43/435705

73. “Impacts of temperature and moisture on the resistive switching characteristics of a Cu-Ta$_2$O$_5$-based atomic switch”
T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono
DOI: 10.1557/opl.2012.901

74. “Flexible polymer atomic switches using ink-jet printing technique”
S. R. Mohapatra, T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono
DOI: 10.1557/opl.2012.1022

75. “Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces”
I. Valov, I., Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, and R. Waser
DOI: 10.1038/NMAT3307

76. “Oxygen migration process in the interfaces during bipolar resistive switching behavior of the WO$_{3-x}$-based nanoionics devices”
R. Yang, K. Terabe, T. Tsuruoka, T. Hasegawa, and M. Aono
DOI: 10.1063/1.4726084

77. “On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration”
DOI: 10.1021/nn302510e

78. “Improved OFF-state reliability of nonvolatile resistive switch with low programming voltage”
M. Tada, T. Sakamoto, M. Miyamura, N. Banno, K. Okamoto, N. Iguchi, and H. Hada
DOI: 10.1109/TED.2012.2204263

79. “First demonstration of logic mapping on nonvolatile programmable cell using complementary atom switch”
80. “Improved reliability and switching performance of atom switch by using ternary Cu-alloy and RuTa electrodes”
M. Tada, T. Sakamoto, N. Banno, K. Okamoto, M. Miyamura, N. Iguchi, and H. Hada
DOI: 10.1109/IEDM.2012.6479020

81. “Nonvolatile 32x32 crossbar atom switch block integrated on a 65-nm COMS platform”
DOI: 10.1109/VLSIT.2012.6242450

2013
84. “Rate-limiting processes in the fast SET operation of a gapless-type Cu-Ta₂O₅ atomic switch”
T. Tsuruoka, T. Hasegawa, I. Valov, R. Waser, and M. Aono
DOI: 10.1063/1.4795140

85. “Volatile and nonvolatile selective switching of a photo-assisted atomic switch”
T. Hino, T. Hasegawa, H. Tanaka, T. Tsuruoka, K. Terabe, T. Ogawa, and M. Aono
Nanotechnology 24 (2013) 384006.
DOI: 10.1088/0957-4484/24/38/384006

86. “Generic relevance of counter charges for cation-based nanoscale resistive switching memories”
S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, and M. Aono
DOI: 10.1021/nn4026614

87. “Nonvolatile three-terminal operation based on oxygen vacancy drift in a Pt/Ta₂O₅₋ₓ/Pt,Pt structure”
Q. Wang, Y. Itoh, T. Hasegawa, T. Tsuruoka, S. Watanabe, S. Yamaguchi, and M. Aono
DOI: 10.1063/1.4811122

88. “Quantized conductance and neuromorphic behavior of a gapless-type Ag-Ta₂O₅ atomic
switch”
T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono
DOI: 10.1557/opl.2013.719

89. “Synaptic plasticity and memory functions achieved in WO$_{3-x}$-based nanoionics device by using principle of atomic switch operation”
R. Yang, K. Terabe, Y. Yao, T. Tsuruoka, T. Hasegawa, J. K. Gimzewski, and M. Aono
Nanotechnology 24 (2013) 384003.
DOI: 10.1088/0957-4484/24/38/384003

90. “Improved ON-state reliability of atom switch using alloy electrodes”
DOI: 10.1109/TED.2013.2275188

91. “Bidirectional TaO-diode-selected, complementary atom switch (DCAS) for area-efficient, nonvolatile crossbar switch block”

92. “Room temperature RedOx reaction by oxide ion migration at carbon/Gd-doped CeO$_2$ hetero-interface probed by in-situ hard X-ray photoemission and soft X-ray absorption spectroscopy”
DOI: 10.1088/1468-6996/14/4/045001

DOI: 10.1016/j_ssi_2013.09.015

94. “All-solid-state electric-double-layer transistor based on oxide ion migration in Gd-doped CeO$_2$ on SrTiO$_3$ single crystal”
T. Tsuchiya, K. Terabe, and M. Aono
DOI: 10.1063/1.4818736

95. “Morphological transitions from dendrites to nanowires in the electroless deposition of silver”
A. V. Avizienis, C. Martin-Olmos, H. O. Sillin, M. Aono, J. K. Gimzewski, and Adam Z. Stieg
DOI: 10.1021/cg301692n

96. “A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing”
2014

97. “Two types of on-state observed in the operation of redox-based three-terminal device”
Q. Wang, Y. Itoh, T. Tsuruoka, T. Hasegawa, S. Watanabe, S. Yamaguchi, and M. Aono
DOI: 10.4028/www.scientific.net/KEM.596.111

98. “Influence of atmosphere on photo-assisted atomic switch operations”
T. Hino, T. Hasegawa, H. Tanaka, T. Tsuruoka, T. Ogawa, and M. Aono
DOI: 10.4028/www.scientific.net/KEM.596.116

99. “Impact of overshoot current on set operation of atom switch”
T. Sakamoto, M. Tada, M. Miyamura, N. Banno, K. Okamoto, N. Iguchi, and H. Hada,
DOI: 10.7567/JJAP.53.04ED07

100. “Low-power programmable-logic cell arrays using nonvolatile complementary atom switch”
M. Miyamura, T. Sakamoto, M. Tada, N. Banno, K. Okamoto, N. Iguchi, and H. Hada,
DOI: 10.1109/ISQED.2014.6783344

101. “A fast and low-voltage Cu complementary-atom-switch 1Mb array with high-temperature retention”
N. Banno, M. Tada, T. Sakamoto, M. Miyamura, K. Okamoto, N. Iguchi, and H. Hada,
DOI: 10.1109/VLSIT.2014.6894437

102. “Improved switching voltage variation of Cu atom switch for nonvolatile programmable logic”
N. Banno, M. Tada, T. Sakamoto, K. Okamoto, M. Miyamura, N. Iguchi, and H. Hada,
DOI: 10.1109/TED.2014.2355830

103. “Three-terminal nonvolatile resistive-change device integrated in Cu-BEOL”
M. Tada, K. Okamoto, N. Banno, T. Sakamoto, and H. Hada
DOI: 10.1109/TED.2013.2296036

104. “Atom switch technology for low-power nonvolatile logic application”
M. Tada, T. Sakamoto, M. Miyamura, N. Banno, K. Okamoto, and H. Hada
ECS Transactions 61(6) (2014) 57-64.
DOI: 10.1149/06106.0057ecst

105. “Conduction paths in Cu/amorphous-Ta2O5/Pt atomic switch: First-principles studies”
B. Xiao, T. Gu, T. Tada, and S. Watanabe
106. “In-situ monitoring of oxide ion induced breakdown in amorphous tantalum oxide thin film using acoustic emission measurement”
T. Tsuchiya, K. Ito, S. Miyoshi, M. Enoki, and S. Yamaguchi
DOI: 10.2320/matertrans.M2014198

107. “Oxygen vacancy effects on an amorphous-TaOx-based resistive switch: A first principles studies”
B. Xiao and S. Watanabe
DOI: 10.1039/C4NR02173H

108. “In situ and non-volatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor”
T. Tsuchiya, K. Terabe, and M. Aono
DOI: 10.1002/adma.20134770

109. “Micro x-ray photoemission and Raman spectroscopy studies on bandgap tuning of graphene oxide achieved by solid state ionics devices”
T. Tsuchiya, K. Terabe, and M. Aono
DOI: 10.1063/1.4901103

110. “Self-organized atomic switch networks”
DOI: 10.7567/JJAP.53.01AAA02

2015

111. “Dynamic moderation of an electric field using a SiO2 tunneling layer in TaOx-based ReRAM”
DOI: 10.1002/pssr.201409531

112. “Position detection and observation of a conducting filament hidden under a top electrode in a Ta2O5-based atomic switch”
A. Nayak, Q. Wang, Y. Itoh, T. Tsuruoka, T. Hasegawa, L. Boodhoo, H. Mizuta, and M. Aono
DOI: 10.1088/0957-4484/26/14/145702

113. “Redox reactions at Cu,Ag/Ta2O5 interfaces and the effects of Ta2O5 film density on the forming process in atomic switch structures”
114. “Effects of temperature and ambient pressure on the resistive switching behavior of a polymer-based atomic switch”
S. R. Mohapatra, T. Tsuruoka, K. Krishnan, T. Hasegawa, and M. Aono
DOI: 10.1039/c5tc00842e

115. “Ultra-low voltage and ultra-low power consumption nonvolatile operation of a three-terminal atomic switch”
Q. Wang, Y. Itoh, T. Tsuruoka, M. Aono, and T. Hasegawa
DOI: 10.1002/adma.201502678

116. “Nanosecond fast switching processes observed in gapless-type, Ta$_2$O$_5$-based atomic switches”
T. Tsuruoka, T. Hasegawa, and M. Aono
DOI: 10.1557/opl.2015.93

117. “Observation of a Ag protrusion on a Ag$_2$S island using a scanning tunneling microscope”
T. Ohno and T. Hasegawa
DOI: 10.1016/j.rinp.2015.08.004

118. “Low-power embedded read-only memory using atom switch and silicon-on-thin-buried-oxide transistor”
DOI: 10.7567/APEX.8.045201

119. “Mechanism of OFF-state lifetime improvement in complementary atom switch”
DOI: 10.7567/JJAP.54.059201

120. “Logic comparable process technology for embedded atom switch in CMOS”
DOI: 10.7567/JJAP.54.05ED05

121. “Cu atom switch with steep time-to-ON-state versus switching voltage using Cu ionization control”
122. “0.39-V, 18.26-µW/MHz SOTB CMOS Microcontroller with embedded atom switch ROM”
2015 IEEE Symposium in Low-Power and High-Speed Chips, 1-3.
DOI: 10.1109/CoolChips.2015.7158658

123. “Sub-µW standby power, <18µW/DMIPS@25MHz MCU with embedded atom-switch programmable logic and ROM”
2015 Symposium on VLSI Circuits, T86-T87.
DOI: 10.1109/VLSIC.2015.7231363

124. “A novel two-varistors (a-Si/SiN/a-Si) selected complementary atom switch (2V-1CAS) for nonvolatile crossbar switch with multiple fan-outs”
2015 IEEE International Electron Devices Meeting (IDEM), 2.5.1-2.5.4.
DOI: 10.1109/IEDM.2015.7409614

125. “A silicon-on-thin-buried-oxide CMOS microcontroller with embedded atom-switch ROM”
DOI: 10.1109/MM.2015.142

126. “Effect of ionic conductivity on response speed of SrTiO$_3$-based all-solid-state electric-double-layer transistor”
T. Tsuchiya, M. Ochi, T. Higuchi, K. Terabe, and M. Aono
DOI: 10.1021/acsami.5b02998

127. “In situ and non-volatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide”
T. Tsuchiya, T. Tsuruoka, K. Terabe, and M. Aono
DOI: 10.1021/nn507363g

128. “Atomic switch networks – nanoarchitectonic design of a complex system of natural computing”
DOI: 10.1088/0957-4484/26/20/4003
2016

129. “Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches”
K. Krishnan, T. Tsuruoka, C. Mannequin, and M. Aono
DOI: 10.1002/adma.201504202

130. “Direct observation of anodic dissolution and filament growth behavior in polyethylene-oxide-based atomic switch structures”
K. Krishnan, T. Tsuruoka, and M. Aono
DOI: 10.7567/JJAP.55.06GK02

131. “Humidity effects on the redox reactions and ionic transport in a Cu/Ta$_2$O$_5$/Pt atomic switch structure”
T. Tsuruoka, I. Valov, C. Mannequin, T. Hasegawa, R. Waser, and M. Aono
DOI: 10.7567/JJAP.55.06GJ09

132. “Composition of thin Ta$_2$O$_5$ films deposited by different methods and the effect of humidity on their resistive switching behavior”
C. Mannequin, T. Tsuruoka, T. Hasegawa, and M. Aono
DOI: 10.7567/JJAP.55.06GG08

133. “Decision maker based on atomic switches”
S. J. Kim, T. Tsuruoka, T. Hasegawa, M. Aono, K. Terabe, and M. Aono
DOI: 10.3934/matersci.2016.1.245

134. “Identification and roles of nonstoichiometric oxygen in amorphous Ta$_2$O$_5$ thin films deposited by electron beam and sputtering processes”
C. Mannequin, T. Tsuruoka, T. Hasegawa, and M. Aono
DOI: 10.1016/j.apsusc.2016.04.099

135. “Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices”
K. Krishnan, M. Aono, and T. Tsuruoka
DOI: 10.1039/c6nr00569a

136. “Area-efficient nonvolatile carry chain based on pass-transistor/atom-switch hybrid logic”
DOI: 10.7567/JJAP.55.04EF01

137. “Nanoionic devices enabling a multitude of new features”
K. Terabe, T. Tsuchiya, R. Yang, and M. Aono
138. “In situ tuning of magnetization and magnetoresistance in Fe$_3$O$_4$ thin film achieved with all-solid-state redox devices”
T. Tsuchiya, K. Terabe, M. Ochi, T. Higuchi, M. Osada, Y. Yamashita, S. Ueda, and M. Aono
DOI: 10.1021/acsnano.5b07374

139. “Comparison of subthreshold swing in SrTiO$_3$-based all-solid-state electric-double-layer transistors with Li$_4$SiO$_4$ or Y-stabilized ZrO$_2$ solid electrolyte”
T. Tsuchiya, M. Ochi, T. Higuchi, and K. Terabe
DOI: 10.7567/JJAP.55.06GJ03

140. “Nanoionic devices: Interface nanoarchitectonics for physical property tuning and enhancement”
T. Tsuchiya, K. Terabe, R. Yang, and M. Aono
DOI: 10.7567/JJAP.55.1102A4

141. “Ag$_2$S atomic switch-based ‘tug of war’ for decision making”
C. Lutz, T. Hasegawa, and T. Chikyow
DOI: 10.1039/c6nr00690f

142. “Robust Cu atom switch with over-400ºC thermally tolerant polymer-solid electrolyte (TT-PSE) for nonvolatile programmable logic”
DOI: 10.1109/VLSIT.2016.7573403

143. “A 2x logic density programmable logic array using atom switch fully implemented with logic transistors at 40 nm–node and beyond”
DOI: 10.1109/VLSITC.2016.7573461

2017
144. “Highly reproducible and regulated conductance quantization in a polymer-based atomic switch”
K. Krishnan, M. Muruganathan, T. Tsuruoka, H. Mizuta, and M. Aono
Advanced Functional Materials (published online).
DOI: 10.1002/adfm.201605104

145. “Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using thin oxide layers”
T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono
Journal of Electroceramics (published online).
DOI: 10.1007/s10832-016-0063-9

146. “Quantized conductance operation near a single-atom point contact in a polymer-based atomic switch”
K. Krishnan, M. Muruganathan, T. Tsuruoka, H. Mizuta, and M. Aono

147. “Electrical-pulse-induced resistivity modulation in Pt/TiO$_2$/δPt multilayer device related to nanoions-based neuromorphic function”

2. 解説記事・書籍

156. 長谷川慎, 寺部一弥, 中山知信, 青野正和, 「究極的なナノデバイス「原子スイッチ」の開発」, 未来材料 5(6), pp.31-37 (2005).

158. 長谷川慎, 青野正和, 「固体電気化学反応を利用した実用デバイス「原子スイッチ」の開発」, 化学と工業 58(11), pp.1336-1338 (2005).

159. 阪本利司, 師山隼一, 砂村満, 水野正之, 川浦久雄, 長谷川慎, 寺部一弥, 青野正和, 「固体電解質ナノスイッチ」, 電気学会論文誌C「次世代LSIデバイス・プロセス技術の課題と展望」特集 126, pp.714-719 (2006).

162. 阪本利司，帰山隼一，長谷川剛，寺部一弥，「固体メモリー」, 応用物理 75(9), pp.1126-1130 (2006).

163. 阪本利司，帰山隼一，水野正之，寺部一弥，長谷川剛，青野正和，「LSI回路の再構成を可能とするナノブリッジ」, NEC技報 60(1), pp.73-76 (2007).

165. 川浦久雄，阪本利司，伴野直樹，帰山隼一，水野正之，寺部一弥，長谷川剛，青野正和，「固体電解質を用いた3 端子型ナノメートル金属スイッチ」, 電気学会論文誌C 128(6), pp.890-895 (2008).

168. 岡島義尚，濬田靖，山口周，鈴木俊夫，「Ag/Ag:S系原子スイッチにおけるAg柱成長とスイッチング挙動の数値シミュレーション」日本金属学会誌 73, pp.589-594 (2009).

171. 長谷川剛，「アトムトランジスタの開発」，電気協会報 1042, pp.25-27 (2011).

177. 鶴岡徹、「酸化物薄膜中のカチオン伝導を利用した原子スイッチ型抵抗変化メモリ」，電子情報通信学会技術研究報告 116, pp.25-30 (2016)．

178. 寺部一弥，青野正和，「固体イオニクスの新たな展開」，応用物理 85(5), pp.364-376 (2016)．

3. 受賞等

177. 寺部一弥，長谷川剛，田村拓郎，Manisha Kundu，根岸良太，梁長浩，阪本利司，青野正和，未踏科学技術協会インテリジェント材料・システムフォーラム高木賞「ナノイオニクス現象を利用した原子スイッチの開発」，2005年3月．

178. 青野正和，長谷川剛，寺部一弥，中山知信，文部科学大臣表彰科学技術賞「原子スイッチ型抵抗変化メモリ」，2007年4月．

179. 寺部一弥，長谷川剛，中山知信，青野正和，表面科学会誌賞「原子スイッチ型抵抗変化メモリ」，2007年11月．

180. 青野正和，2010年ファイナンス賞（実験部門），2011年2月．

181. 長谷川剛，伊藤弥生美，田中啓文，日野貴美，鶴岡徹，寺部一弥，宮崎久生，塚越一仁，小川琢治，山口周，青野正和，第34回(2012年度)応用物理学会優秀論文賞「Volatile/Nonvolatile Dual-Functional Atom Transistor」，2012年8月．

183. 土屋敬志，電気化学会田川記念固体化学奨励賞「ナノイオニクスデバイスの研究」，2016年1月．

4. 新聞発表等

186. 「固体電解質中の原子移動を利用した金属スイッチ技術を開発」，PC Watch，2004年2月16日．

187. 「パソコン並みケータイできる」，読売新聞15面，2005年1月6日．

188. 「省エネ・高速ナノスイッチ」，朝日新聞2面，2005年1月6日．

189. 「原子スイッチを開発」，毎日新聞21面，2005年1月8日．

190. 「光照射で電源オン」，日刊工業11面，2010年7月14日．
191. 「ナノサイズの光スイッチ」，日経産業新聞11面，2010年7月14日。
192. 「光ナノスイッチ開発」，化学工業日報5面，2010年7月14日。
193. 「超省エネトランジスター」，読売新聞2面，2010年12月24日。
194. 「消費電力100％の1 演算・記憶トランジスタ」，毎日新聞4面，2010年12月24日。
195. 「消費電力100％の1のトランジスタ開発」，朝日新聞2面，2010年12月24日。
196. 「腦型コンピューターに一歩」，日本経済新聞34面，2010年12月24日。
197. 「演算と記憶の複合素子を開発」，日刊工業新聞20面，2010年12月24日。
198. 「不要な情報忘れの人工シナプス」，毎日新聞6面，2011年6月27日。
199. 「人間のように記憶・忘却 脳型素子を開発」，日刊工業新聞17面，2011年6月27日。
200. 「不要な情報は「忘却」次世代素子を開発」，茨城新聞21面，2011年6月27日。
201. 「記憶も忘却もする素子 脳シナプスに相当」，日経産業新聞9面，2011年6月27日。
202. 「不要な情報忘れ 脳型コンピューターに道」，日本経済新聞11面，2011年6月27日。
203. 「「記憶」「忘却」どちらも可能 物材機構チームが「脳型素子」開発」，科学新聞2面，2011年7月8日。
204. 「「最小」操る技極める」，朝日新聞22面，2012年4月2日。
205. 「金属イオンの析出 原子レベルで観察」，日刊工業新聞11面，2012年4月30日。
206. 「化学反応時の原子観察 燃料電池の電極」，日経産業新聞9面，2012年5月15日。
207. 「脳神経伝達物質を模倣 素子が環境変化に反応」，日刊工業新聞21面，2012年5月24日。
208. 「環境で応答変化 新型素子を開発」，日経産業新聞11面，2012年5月24日。
209. 「酸化グラフェンのバンドギャップ その場で自在に制御」，科学新聞4面，2014年1月17日。
210. 「NanoBridgeに対応した新しいLSI設計技術を開発」，JCN Newswire，2015年9月7日。
211. 「NB-FPGAの設計時間が1/10に」，EE Times Japan，2015年9月8日。
212. 「高集積化が可能な低電流スピントロニクス素子を開発」，科学新聞4面，2016年1月29日。
213. 「低電流で磁性制御可能な素子開発」，日刊産業新聞15面，2016年1月14日。
214. 「人間くさいAIで1万倍省電力化する「脳型コンピューティング」など最先端の研究を紹介」，PC Watch，2016年12月16日。
215. 「宇宙環境向けに放射線耐性のNanoBridge技術を搭載したLSIを開発」，日本経済新聞，2017年3月7日。
216. 「宇宙での利用を想定した高放焦点性のNanoBridge式FPGAを開発」, PC Watch, 2017年3月7日
International Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science (NIMS)