The 6th Waseda-NIMS International Symposium

Artificial design for perovskite ferroelectrics using nanosheet architectonics

°Khan Muhammad Shuaib^{1,2} and Minoru Osada^{1,2}*

 ¹ Department of Nanoscience and Nanoengineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
² International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.
*E-mail address: <u>osada.minoru@nims.go.jp</u>

Control over the emergence of ferroelectric order remains a fundamental challenge for the rational design of artificial materials with novel properties. Here, we report a new strategy for artificial design of layered perovskite ferroelectrics by the assembly of oxide nanosheets in a unit-cell-uponunit-cell manner (Figure 1). Ferroelectricity is ubiquitous in the ABO₃ perovskite titanates, niobates, and tantalates. However, the only layered perovskites to display a ferroelectric transition has been Aurivillius compounds such as SrBi₂Ta₂O₉, Bi_{4-x}La_xTi₃O₁₂, and a few others. In these perovskites, ferroelectricity arises from a highly polarized nature of perovskite-type layers [1]. Our principal concern is artificial design of layered perovskite ferroelectrics by perovskite nanosheets as a building block. We fabricated high-quality bicolor perovskite superlattices, composed of three different perovskite nanosheets (Ca2Nb3O10, Ca2NaNb4O13, Ca2Na2Nb5O16). These perovskite nanosheets are Dion-Jacobson phases with different perovskite-like layers (m octahedral thick). We approached the preparation of superlattice films by a layer-by-layer assembly involving Langmuir-Blodgett deposition. The artificially fabricated superlattices $[(Ca_2Nb_3O_{10}/Ca_2NaNb_4O_{13})_n]$ $(Ca_2Nb_3O_{10}/Ca_2Na_2Nb_5O_{16})_n$ are structurally unique, which is not feasible to create in the bulk form. By such an artificial structuring, we found that these superlattices possess a new form of interface coupling, which gives rise to ferroelectricity with a good fatigue-free characteristic. Considering the flexibility of self-assembled nanosheets interfaces, this technique provides a route to synthesize a new kind of layered ferroelectric oxides.

We also address SPM characterization of ferroelectric properties in individual perovskite nanosheets (Ca₂Nb₃O₁₀, Ca₄Nb₃TiO₁₃).

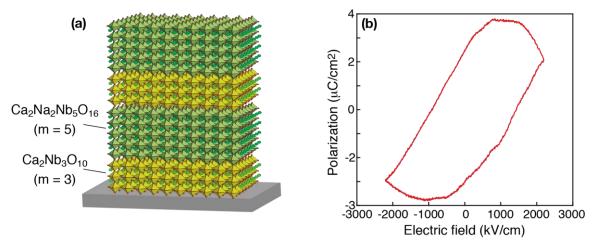


Figure 1. (a) Structural model and (b) ferroelectric property of a nanosheets superlattice $(Ca_2Nb_3O_{10}/Ca_2Na_2Nb_5O_{16})_n$ (*n* = 6).

Reference

[1] B. W. Li, M. Osada, T. C. Ozawa, Y. Ebina, K. Akatsuka, R. Ma, H. Funakubo, and T. Sasaki, ACS Nano 4, 6673 (2010).