The 6th Waseda-NIMS International Symposium

Low Concentration of TiO₂ Nanoparticle Induced Cell Proliferation

• Qingqing Sun^{1,2}, Koki Kanehira³, Akiyoshi Taniguchi^{1,2}*

*E-mail address: TANIGUCHI.Akiyoshi@nims.go.jp

1. Introduction

Titanium Oxide nanoparticles (TiO₂ NPs) have been widely used in various fields because of their high surface area-to-volume ratio and specific properties. However it also causes nanotoxicity in biomaterials at high concentration of NPs ^[1]. To decrease its nanotoxicity, one common way is modification of TiO₂ NPs with PEG or PEG-derived polymers. In our work, TiO₂ (100 nm), P25-TiO₂ (200 nm) ^[2] and PEG-TiO₂ (100 nm) ^[3] NPs were separately fabricated as described previously. The objective of this study is to focus on the effects of different concentrations of TiO₂ NPs on Hepatocellular cell line (HepG2), including cell viability, cellular uptake, cell proliferation, and cell cycle.

2. Results

The SEM images of the three agglomerated NPs are shown in figure 1 (A)~(C). Figures (D) and (E) show cell viability of TiO_2 NPs in HepG2 cells. The results revealed low concentration ($\leq 100 \, \mu \text{g/mL}$) of TiO_2 NPs increased cell viability, while high concentration ($400 \sim 1000 \, \mu \text{g/mL}$) of TiO_2 NPs caused cytotoxicity to HepG2 cells. Furthermore, cell numbers of HepG2 cells significantly increased under low concentrations of TiO_2 NPs compared with the control (Fig.1D&E). Now, we are studying on the cell cycle and how TiO_2 NPs induce proliferation of HepG2 cells.

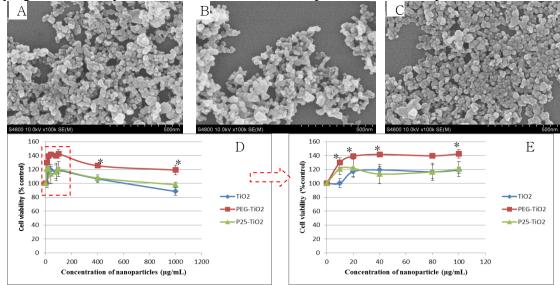


Figure 1. The SEM morphologies of different NPs and their effects on cell viability of HepG2 cells. A: TiO_2 NPs (100 nm), B: P25- TiO_2 NPs (200 nm), C: PEG- TiO_2 NPs (100 nm); D: Cell viability of HepG2 cells. HepG2 cells were exposed to the three NPs for 72 h; E: The amplification of cell viability under low concentration exposure; *p \leq 0.05, n \geq 3.

Reference:

- [1] K. S. El-Said, E. M. Ali, K. Kanehira, A. Taniguchi, J. Biosens. Bioelectron., 4, 5 (2013).
- [2] J. O. Shimazaki, S. Takaku, K. Kanehira, S. Sonezaki, A. Taniguchi, *Int. J. Mol. Sci.*, **11**, 2383-2392 (2010).
- [3] S. S. Mano, K. Kanehira, S. Sonezaki, A. Taniguchi, *Int. J. Mol. Sci.*, **13**, 3703-3717 (2012).

¹ Department of Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

² International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

³ TOTO Ltd. Research Institute, Nakashima 2-1-1, Kokurakita, Kitakyushu, 802-8601, Japan.