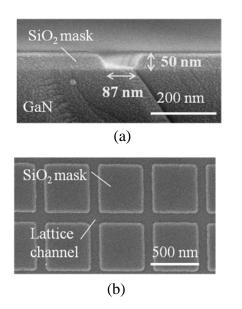
The 6th Waseda-NIMS International Symposium High Quality GaN Template Using Nanometer-Size SiO₂ mask structure fabricated by UV-NIL


•Akiko Okada¹, Hidetoshi Shinohara², Hiroshi Goto², Toshiharu Matsueda³, Haruo Sunakawa³, Hiroki Goto³, Takuya Nakagawa³, Akira Usui³, Atsushi A. Yamaguchi⁴, Shuichi Shoji¹ and Jun Mizuno⁵*

¹ Department of Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

²Nano Processing System Division, Toshiba Machine Co. Ltd., Shizuoka 410-8510, Japan.
³Nitride Semiconductor Department, Furukawa Co. Ltd., Tochigi 323-8601, Japan.
⁴Optoelectronic Device System R&D Center, Kanagawa Institute of Technology, Ishikawa 921-8501, Japan.
⁵Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.

*E-mail address: mizuno@waseda.jp

In this study, high quality 2-inch GaN template with low dislocation density was demonstrated by nanometer-size channel facet-initiated epitaxial lateral overgrowth (nano-channel FIELO) [1, 2] using 500-nm-square SiO₂ masks. Square-lattice SiO₂ masks were designed to reduce a dependence of stripe pattern orientation on the crystal quality. The SiO₂ masks were fabricated by UV nanoimprint lithography (UV-NIL) and inductively coupled plasma (ICP) etching. The cross-sectional scanning electron microscope (SEM) observations reveal that uniform SiO₂ mask was successfully fabricated (Fig. 1). As shown in Fig.2, GaN clearly grew to the facet structures along the lattice channel and eventually the surface became flat within the growth thickness of 1 μ m. The etch pit density measurements reveal that the dislocation density successfully decreased to 3.2 x 10⁷ /cm² and X-ray rocking curve (XRC) measurements show that the fabricated GaN had isotropic characteristics. Therefore, nano-size lattice SiO₂ mask is highly effective in realizing isotropic nature of crystal quality as well as reducing dislocation density.

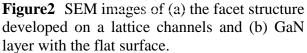


Figure1 (a) Cross-sectional and (b) top-view SEM image of SiO₂ mask structure.

Reference:

 $\begin{array}{c|c} GaN & SiO_2 mask & 1 \ \mu m \\ \hline \\ (a) \\ \hline \\ \hline \\ GaN & Lattice channels & 1 \ \mu m \\ \hline \\ (b) \\ \hline \\ \\ \end{array}$

Facet structure

- A. Usui, T. Matsueda, H. Goto, H. Sunakawa, Y. Fujiyama, Y. Ishihara, A. Okada, S. Shoji, A. A. Yamaguchi, H. Nishihara, H. Shinohara, H. Goto, J. Mizuno, *Jpn. J. Appl. Phys.*, 52, 08JB02 (2013).
- [2] A. Okada, S. Shoji, H. Shinohara, H. Nishihara, H. Goto, H. Sunakawa, T. Matsueda, A. Usui, A. A. Yamaguchi, J. Mizuno, *J. Photopolym. Sci. Technol.*, **26**, 69-72 (2013).