next up previous
次へ: total charge 上へ: Green function of the 戻る: Green function of the

block matrix


\begin{displaymath}
(\omega -H) G = I
\end{displaymath}

consider L,C and R region and rewrite it
\begin{displaymath}
(w-H) = \left[ \begin{array}{ccc}
\omega -H_{L} & -H_{LC} &...
... -H_{CR} \\
0 & -H_{RC} & \omega -H_{R}
\end{array} \right]
\end{displaymath} (57)

$G_{C}$, the Green function at the C region, can be calculates as3

$\displaystyle G_{C}$ $\textstyle =$ $\displaystyle \{ \omega -H_{C} - H_{CR} (\omega -H_{R})^{-1} H_{RC}
- H_{CL} (\omega -H_{L})^{-1} H_{LC} \}^{-1}$ (58)
  $\textstyle =$ $\displaystyle \{ \omega -H_{C} -\Sigma_R -\Sigma_L \}^{-1}$ (59)
$\displaystyle \Sigma_R$ $\textstyle =$ $\displaystyle H_{CR} (\omega -H_{R})^{-1} H_{RC} = H_{CR} G_R H_{RC}$ (60)
$\displaystyle \Sigma_L$ $\textstyle =$ $\displaystyle H_{CL} (\omega -H_{L})^{-1} H_{LC} = H_{CL} G_L H_{LC}$ (61)

$G_R$ and $G_L$ corresponds to the surface Green function, $G_{00}$, in the previous section.

Note that $G_{C}(\omega )$ is calculated for $G_{C}^R(\omega )=G_{C}(\omega +i\delta )$ and $G_{C}^A(\omega )=G_{C}(\omega -i\delta )$.

define for the later convenience

$\displaystyle \Gamma _R$ $\textstyle =$ $\displaystyle i ( \Sigma_R^R - \Sigma_R^A )$ (62)
$\displaystyle \Gamma _L$ $\textstyle =$ $\displaystyle i ( \Sigma_L^R - \Sigma_L^A )$ (63)

In the equilibrium condition, 4

$\displaystyle G^<$ $\textstyle =$ $\displaystyle i A f(E-\mu)$ (64)
$\displaystyle A$ $\textstyle =$ $\displaystyle i (G^R - G^A )$ (65)
$\displaystyle G^{<}$ $\textstyle =$ $\displaystyle -(G^R-G^A) f(E-\mu)$ (66)

while
\begin{displaymath}
G^< = G^R \Sigma^< G^A
\end{displaymath} (67)

therefore
$\displaystyle \Sigma^<$ $\textstyle =$ $\displaystyle -{G^R}^{-1} (G^R -G^A) f(E-\mu) {G^A}^{-1}$ (68)
  $\textstyle =$ $\displaystyle -( {G^A}^{-1} - {G^R}^{-1} ) f(E-\mu)$ (69)
  $\textstyle =$ $\displaystyle -( \Sigma^R -\Sigma^A ) f(E-\mu)$ (70)

How are $\Sigma_R$ and $\Sigma_L$? They are defined in non-equilibrium region, C. but near the region L or R, they approximately satisfy equilibrium condition.

$\displaystyle \Sigma_R^{<}$ $\textstyle =$ $\displaystyle - ( \Sigma_R^{R} - \Sigma_R^{A} ) f(E-\mu_R)$ (71)
$\displaystyle \Sigma_L^{<}$ $\textstyle =$ $\displaystyle - ( \Sigma_L^{R} - \Sigma_L^{A} ) f(E-\mu_L)$ (72)


next up previous
次へ: total charge 上へ: Green function of the 戻る: Green function of the
kino 平成18年4月17日