next up previous
次へ: Acknowledgement 上へ: sg8_6 戻る: phase between the neibouring

charge density in the non-orthogonal basis set

In this section, we consider the dual basis representation.

Eigen value and eigen state safisfy the equation,

\begin{displaymath}
H \vert \alpha \rangle = E_\alpha \vert \alpha \rangle
\end{displaymath}

$\vert \alpha \rangle $ is constructed using atomic basis set $\vert i\rangle $ (LCAO),

\begin{displaymath}
\vert \alpha \rangle = \sum_i c_{\alpha, i} \vert i\rangle
\end{displaymath}

The eigen energy is calculated by solving generalized eigenvalue problem,
$\displaystyle \langle i \vert H \vert j \rangle$ $\textstyle =$ $\displaystyle E \langle i \vert j \rangle$ (276)
$\displaystyle H_{ij}$ $\textstyle =$ $\displaystyle E S_{ij}$ (277)

with the normalization condition \( \langle \alpha \vert \alpha \rangle =1 \). The Green function is defined as

\begin{displaymath}
G(z) = \sum_{\alpha} \frac{ \vert \alpha \rangle \langle \alpha \vert }{ z-E_\alpha}
\end{displaymath}

Here we define the dual basis set in the atomic basis set,

\begin{displaymath}\vert \bar{i} \rangle = \sum_j \vert j \rangle S_{ji}^{-1} \end{displaymath}

where \( S_{ij} = \langle i \vert j \rangle \). Then

\begin{displaymath}\langle \bar{i} \vert j \rangle = \delta_{ij}
\end{displaymath}

The trace of $A$ is expressed as

\begin{displaymath}
\mbox{Tr}[ A ] = \langle A \rangle = \langle \bar{i} \vert A \vert i \rangle
\end{displaymath}

The Green function is

$\displaystyle \langle \bar{i} \vert G \vert \bar{j} \rangle$ $\textstyle =$ $\displaystyle \sum_{\alpha} \frac{\langle \bar{i} \vert \alpha \rangle
\langle \alpha \vert \bar{j} \rangle }{z-E_\alpha}$ (278)
  $\textstyle =$ $\displaystyle \sum_{\alpha} \frac{c_{\alpha, i} c_{\alpha, j}^* }{z-E_\alpha}$ (279)

Then the charge density is

$\displaystyle \langle \rho \rangle$ $\textstyle =$ $\displaystyle \sum_i \langle \bar{i} \vert \rho \vert i \rangle$ (280)
  $\textstyle =$ $\displaystyle \sum_{i,j} \langle \bar{i} \vert \rho \vert \bar{j} \rangle \langle j \vert i \rangle$ (281)
  $\textstyle =$ $\displaystyle \sum_{i,j} \langle \bar{i} \vert \left\{-\int dz \frac{1}{\pi} {\rm Im} G(z) \right\} \vert \bar{j} \rangle \langle j \vert i \rangle$ (282)
  $\textstyle =$ $\displaystyle -\int dz \frac{1}{\pi} {\rm Im} \sum_{i,j} \langle \bar{i} \vert G(z) \vert \bar{j} \rangle \langle j \vert i \rangle$ (283)
  $\textstyle =$ $\displaystyle -\int dz \frac{1}{\pi} {\rm Im} \sum_{i,j} G_{ij} S_{ji}$ (284)

Consider the simple case,

$\displaystyle \langle \rho \rangle$ $\textstyle =$ $\displaystyle -\frac{1}{\pi} {\rm Im} \int dz \sum_{\alpha,ij}
\frac{c_{\alpha i} c_{\alpha j}^* }{z-E_\alpha+i\delta} S_{ji}$ (285)
  $\textstyle =$ $\displaystyle \int dz \sum_{\alpha,ij} c_{\alpha i} c_{\alpha j}^* S_{ji} \delta( z-E_\alpha)$ (286)
  $\textstyle =$ $\displaystyle \sum_{E_\alpha \le E_F} \sum_{ij} c_{\alpha i} c_{\alpha j}^* S_{ji}$ (287)
  $\textstyle =$ $\displaystyle \sum_{E_\alpha \le E_F}$ (288)

\( \sum_{ij} c_{\alpha i} c_{\alpha j}^* S_{ji} = 1 \) because of the normalization of $\vert \alpha \rangle $. The left hand side of \( \langle \alpha \vert \alpha \rangle =1 \) can be written as
$\displaystyle \langle \alpha \vert \alpha \rangle$ $\textstyle =$ $\displaystyle \sum_{ij} ( c_{\alpha i}^* \langle i \vert) ( c_{\alpha j} \vert j \rangle )$ (289)
  $\textstyle =$ $\displaystyle \sum_{ij} c_{\alpha i}^* c_{\alpha j} S_{ij}$ (290)

The total band energy can be calculated similarly

$\displaystyle \langle E \rangle$ $\textstyle =$ $\displaystyle \sum_i \langle \bar{i} \vert E \vert i \rangle$ (291)
  $\textstyle =$ $\displaystyle \sum_i \langle \bar{i} \vert E \vert \bar{j} \rangle \langle j \vert i \rangle$ (292)
  $\textstyle =$ $\displaystyle \sum_{ij} E_{ij} S_{ji}$ (293)


next up previous
次へ: Acknowledgement 上へ: sg8_6 戻る: phase between the neibouring
kino 平成18年4月17日