next up previous
次へ: If site0 and site1 上へ: an 1D chain 戻る: an 1D chain

If site 0 is in the central region

Assume that
\begin{displaymath}
\Sigma_R(\omega ^-) = \omega _0 /2 + i \Gamma _0/2
\end{displaymath} (231)

where $\omega ^\pm=\omega \pm i \delta$.
$\displaystyle G_C$ $\textstyle =$ $\displaystyle (\omega - \Sigma_R - \Sigma_L)$ (232)
$\displaystyle \Sigma_R(\omega ^-)$ $\textstyle =$ $\displaystyle {\rm Re }\Sigma_R+ i {\rm Im }\Sigma_R
= \omega _0 /2 + i \Gamma _0/2$ (233)
$\displaystyle \Sigma_R(\omega ^+)$ $\textstyle =$ $\displaystyle {\rm Re }\Sigma_R- i {\rm Im }\Sigma_R
= \omega _0 /2 - i \Gamma _0/2$ (234)
$\displaystyle \Gamma$ $\textstyle =$ $\displaystyle {\rm Im} (\Sigma_R(\omega ^-) - \Sigma_R(\omega ^+))
= \Gamma _0$ (235)

Then
\begin{displaymath}
G_C(\omega ^+) = 1/( \omega - \omega _0 - i \Gamma _0 )
\end{displaymath} (236)

conductance is
$\displaystyle T$ $\textstyle =$ $\displaystyle \Gamma G_C(\omega ^+) \Gamma G_C(\omega ^-)$ (237)
  $\textstyle =$ $\displaystyle \Gamma _0^2 / ( (\omega - \omega _0)^2 + \Gamma _0^2)$ (238)

where $\omega _0$ and $\Gamma _0$ are functions of $\omega $ and must be calculated. $\omega _0=\omega $ in the range from $-2t$ to $2t$ also from numerical calculations. Therefore $T=1$ from $\omega =-2t$ to $\omega =2t$, and $G_C= 1/(-i \Gamma _0)$.


next up previous
次へ: If site0 and site1 上へ: an 1D chain 戻る: an 1D chain
kino 平成18年4月17日