next up previous
次へ: some examples 上へ: , another (easier) derivation 戻る: add boundary condition without

meanings of the excess charge

How to solve

\begin{displaymath}
\nabla^2 V_H(r) = -4 \pi \rho(r )
\end{displaymath} (224)

when $V_H(x,y,z=z_0)$ and $V_H(x,y,z=z_{l+1})$ are given.

Define a parameter, which means the excess charge,

\begin{displaymath}
\rho_B = \rho(r)-\sum_{G\ne 0} \rho(G)
\end{displaymath} (225)

Then
$\displaystyle \nabla^2 ( V(r) + V_B(r) )$ $\textstyle =$ $\displaystyle -4 \pi (\rho(r) + \rho_B )$ (226)
$\displaystyle \nabla^2 V(r)$ $\textstyle =$ $\displaystyle -4 \pi \rho(r )$ (227)
$\displaystyle \nabla^2 V_B(r)$ $\textstyle =$ $\displaystyle -4 \pi \rho_B$ (228)

Eq.(228) is solved via FFT, while Eq.(229) is solved analytically,
\begin{displaymath}
V_B(z) = -4 \pi \rho_B (z - z_0 )^2 + a(z-z_0) + b
\end{displaymath} (229)

parameter $a$ and $b$ is determined via boundary condition. The sign of $\rho _B$ determines how $V_H(z)$ drops. (See figure.1.)

Note that the condition of no s-d bias voltage is satisfied, even if there exists some excess charge,

図 1: relationship between $\rho _B$ and $V(z)$
\begin{figure}\begin{center}
\epsfig{file=dV.eps,width=12cm}
\end{center}
\end{figure}


next up previous
次へ: some examples 上へ: , another (easier) derivation 戻る: add boundary condition without
kino 平成18年4月17日