next up previous
次へ: the case of 上へ: sg8_6 戻る: block matrix, non-orthogonal basis

$\rho \rightarrow V_H$

From Hirose and Tsukada PRB. 51, 5278 (1995) and Hirose's thesis[4,5].

How to solve

\begin{displaymath}
\nabla^2 V_H(r) = -4 \pi \rho(r )
\end{displaymath} (191)

when $V_H(x,y,z=z_0)$ and $V_H(x,y,z=z_{l+1})$ are given.

change the coordinate $r=(x,y,z) \rightarrow (G_{\parallel },z)$, where $G_{\parallel }=(G
_x,G_y)$.

$\displaystyle V_H(r)$ $\textstyle =$ $\displaystyle \sum_{G_{\parallel }} V_H(G_{\parallel },z) e^{i G_{\parallel } r_{\parallel }}$ (192)
$\displaystyle \rho(r)$ $\textstyle =$ $\displaystyle \sum_{G_{\parallel }} \rho(G_{\parallel },z) e^{i G_{\parallel } r_{\parallel }}$ (193)
$\displaystyle \left(\frac{d^2}{dz^2} -G_\parallel ^2\right) V_H(G_{\parallel },z)$ $\textstyle =$ $\displaystyle -4\pi \rho(G_{\parallel },z)$ (194)

Introduce a Green function
$\displaystyle \left(\frac{d^2}{dz^2} -G_\parallel ^2\right) G(G_\parallel ,z,z') =
-\delta (z,z')$     (195)


\begin{displaymath}
G(G_\parallel ,z) = \int dk G(G_\parallel ,k) e^{ikz}
\end{displaymath} (196)



Subsections

kino 平成18年4月17日