next up previous
次へ: use transfer matrix 上へ: surface Green function, non-orthogonal 戻る: surface Green function, non-orthogonal

normal


\begin{displaymath}
(\omega S-H)G = 1
\end{displaymath} (159)


\begin{displaymath}
H = \left[ \begin{array}{ccccc}
H_{00} & H_{01} & 0 & 0 & 0...
...& \ddots \\
0 & 0 & 0 & \ddots & \ddots
\end{array} \right]
\end{displaymath} (160)


\begin{displaymath}
S = \left[ \begin{array}{ccccc}
S_{00} & S_{01} & 0 & 0 & 0...
...& \ddots \\
0 & 0 & 0 & \ddots & \ddots
\end{array} \right]
\end{displaymath} (161)


\begin{displaymath}
G = \left[ \begin{array}{ccccc}
G_{00} & G_{01} & G_{02} & ...
... & & & G_{33} \\
\vdots & & & & \ddots
\end{array} \right]
\end{displaymath} (162)

Use $G_{i0}$ column,

$\displaystyle (\omega S_{00}-H_{00} )G_{00} + (\omega S_{01}-H_{01}) G_{10}$ $\textstyle =$ $\displaystyle I$ (163)
$\displaystyle (\omega S_{10} -H_{10} )G_{00} + (\omega S_{11}-H_{11}) G_{10} +(\omega S_{12}-H_{12}) G_{20}$ $\textstyle =$ $\displaystyle 0$ (164)
$\displaystyle (\omega S_{21}-H_{21}) G_{10} + (\omega S_{22} -H_{22}) G_{20} +(\omega S_{23} -H_{23}) G_{30}$ $\textstyle =$ $\displaystyle 0$ (165)
$\displaystyle \vdots$     (166)

The last two eqs are generalized as

\begin{displaymath}
(\omega S_{nn}-H_{nn}) G_{n0} = -(\omega S_{n,n-1}-H_{n,n-1}) G_{n-1,0}
- (\omega S_{n,n+1}- H_{n,n+1}) G_{n+1,0}
\end{displaymath} (167)

rewrite the relation between the neighboring site.

$\displaystyle g_{s0}^{-1} G_{00}$ $\textstyle =$ $\displaystyle I + \alpha _0 G_{10}$ (168)
$\displaystyle g_{0}^{-1} G_{n0}$ $\textstyle =$ $\displaystyle \beta _0 G_{n-1,0} + \alpha _0 G_{n+1,0}$ (169)

The relationship between the second neighboring is

$\displaystyle g_{s0}^{-1} G_{00}$ $\textstyle =$ $\displaystyle I + \alpha _0 g_0 ( \beta _0 G_{0,0} + \alpha _0 G_{2,0} )$  
$\displaystyle ( g_{s0}^{-1} - \alpha _0 g_0 \beta _0) ) G_{00}$ $\textstyle =$ $\displaystyle I +
\alpha _0 g_0 \alpha _0 G_{2,0}$  
$\displaystyle g_{s1}^{-1} G_{00}$ $\textstyle =$ $\displaystyle I + \alpha _1 G_{20}$ (170)

And

$\displaystyle g_0^{-1} G_{n0}$ $\textstyle =$ $\displaystyle \beta _0 g_0 (
\beta _0 G_{n-2,0} + \alpha _0 G_{n,0} )$  
    $\displaystyle + \alpha _0 g_0 (
\beta _0 G_{n,0} + \alpha _0 G_{n+2,0} )$  
$\displaystyle \{ g_0^{-1} - \beta _0 g_0 \alpha _0 - \alpha _0 g_0 \beta _0 \} G_{n0}$ $\textstyle =$ $\displaystyle \beta _0 g_0 \beta _0 G_{n-2,0} + \alpha _0 g_0 \alpha _0 G_{n+2,0}$ (171)
$\displaystyle g_1^{-1} G_{n0}$ $\textstyle =$ $\displaystyle b_1 G_{n-2,0} + \alpha _1 G_{n+2,0}$ (172)

the relation between $2^i$th neighboring layer is

$\displaystyle g_{si}^{-1} G_{00}$ $\textstyle =$ $\displaystyle I + \alpha _i G_{2^i,0}$ (173)
$\displaystyle g_{i}^{-1} G_{n0}$ $\textstyle =$ $\displaystyle \beta _i G_{n-2^i,0} + \alpha _i G_{n+2^i,0}$ (174)

$g_{si},g_{i}, \alpha _i, \beta _i$ can be evaluated iteratively

$\displaystyle g_{s,i+1}^{-1}$ $\textstyle =$ $\displaystyle g_{s,i}^{-1} - \alpha _i g_i \beta _i$ (175)
$\displaystyle g_{i+1}^{-1}$ $\textstyle =$ $\displaystyle g_{i}^{-1} - \beta _i g_i \alpha _i - \alpha _i g_i \beta _i$ (176)
$\displaystyle a_{i+1}$ $\textstyle =$ $\displaystyle \alpha _i g_i \alpha _i$ (177)
$\displaystyle b_{i+1}$ $\textstyle =$ $\displaystyle \beta _i g_i \beta _i$ (178)

especially

\begin{displaymath}
G_{00} = g_{s,i} \vert_{i\rightarrow \infty}
\end{displaymath} (179)


next up previous
次へ: use transfer matrix 上へ: surface Green function, non-orthogonal 戻る: surface Green function, non-orthogonal
kino 平成18年4月17日