next up previous
次へ: surface Green function, non-orthogonal 上へ: current 戻る: derivation 1. time-dependent

derivation 2. time-independent

from eq.(129)
$\displaystyle \sum_{ \alpha i} t_{ \alpha i} G_{ i  a}^<(t, t)$ $\textstyle =$ $\displaystyle \sum_{ \alpha i} t_{ \alpha i} \sum_j \int d t_1 \left[
\int \fra...
...\frac{d \omega _2}{2 \pi} g_\alpha ^<(\omega _2) e^{-i\omega _2(t-t_1)} \right.$  
    $\displaystyle +
\left.
\int \frac{d \omega _1}{2 \pi} G_{ij}^<(\omega _1) e^{-i...
...\frac{d \omega _2}{2 \pi} g_\alpha ^A(\omega _2) e^{-i\omega _2(t-t_1)}
\right]$ (135)
  $\textstyle =$ $\displaystyle \sum_{\alpha i j} t_{\alpha i}t_{j\alpha } \int \frac{d \omega _1...
..._1) g_\alpha ^<(\omega _1) + G_{ij}^<(\omega _1) g_\alpha ^A(\omega _1) \right]$ (136)

time independent $\rightarrow$ \( \epsilon _\alpha = \epsilon _\alpha ^0 \) (eigenvalue of the isolated L region)

Green functions become

$\displaystyle g_\alpha ^<(\omega )$ $\textstyle =$ $\displaystyle i \int dt e^{i\omega t} f(\epsilon _\alpha ) e^{-i \epsilon _\alpha t} = 2 \pi i \delta (\omega -\epsilon _a)$ (137)
$\displaystyle g_\alpha ^R(\omega )$ $\textstyle =$ $\displaystyle -i \int dt e^{i\omega t-\delta t} \theta(t) e^{-i \epsilon _\alpha t} =
\frac{1}{\omega -\epsilon _\alpha +i \delta }$ (138)
$\displaystyle g_\alpha ^A(\omega )$ $\textstyle =$ $\displaystyle i \int dt e^{i\omega t-\delta t} \theta(-t) e^{-i \epsilon _\alpha t} =
\frac{1}{\omega -\epsilon _\alpha -i \delta }$ (139)

$J_L$ becomes

$\displaystyle J_L$ $\textstyle =$ $\displaystyle 2e {\rm Re} \sum_{\alpha ij} t_{\alpha n} t_{m\alpha } \int \frac...
... _1) +
G_{ij}^<(\omega _1) \frac{1}{\omega -\epsilon _\alpha -i\delta } \right]$ (140)
  $\textstyle =$ $\displaystyle 2e {\rm Im} \int d \omega _1 \left(\sum_\alpha t_{\alpha n} t_{m\...
...t\{ G_{ij}^R(\omega _1) f(\omega _1) + \frac{1}{2} G_{ij}^<(\omega _1) \right\}$  
    $\displaystyle + 2e {\rm Re} \int \frac{d \omega _1}{2\pi} \left(\sum_\alpha t_{...
...alpha } {\rm P}
\frac{1}{\omega -\epsilon _\alpha } \right) G_{ij}^<(\omega _1)$ (141)

Here define

$\displaystyle \Gamma_{ij}(\omega )$ $\textstyle =$ $\displaystyle 2 \pi \sum_\alpha t_{\alpha i} t_{j\alpha } \delta (\omega -\epsilon _\alpha )$ (142)
  $\textstyle =$ $\displaystyle i \sum_\alpha t_{\alpha i} t_{j\alpha } \left( \frac{1}{\omega -\epsilon _\alpha +i\delta } -
\frac{1}{\omega -\epsilon _\alpha -i\delta } \right)$ (143)
  $\textstyle =$ $\displaystyle i \sum_\alpha t_{\alpha i} t_{j\alpha } \left( g_\alpha ^R(\omega )-g_\alpha ^A(\omega ) \right)$ (144)
  $\textstyle =$ $\displaystyle i (\Sigma^R(\omega )-\Sigma^A(\omega ))$ (145)

Use \( {\rm Im} G^R = \frac{1}{2i} ( G^R-G^A ) \),

$\displaystyle J_L$ $\textstyle =$ $\displaystyle -e i \int \frac{d \omega }{2\pi} \sum_{ij} \Gamma_{ij}(\omega ) \left\{
(G^R_{ij} -G^A_{ij}) f(\omega ) + G_{ij}^< \right\}$  
    $\displaystyle + 2e {\rm Re} \int \frac{d \omega }{2\pi} \sum_{ij} \left(
\sum_\...
...\alpha i} t_{j\alpha } \frac{\rm P}{\omega -\epsilon _\alpha } \right) G_{ij}^<$ (146)

If region described by $\{{d_i}\}$,$\{d_i^\dag\}$ is non-interacting, then $G_{ij}^<$ is pure imaginary.

$\displaystyle J_L$ $\textstyle =$ $\displaystyle -e i \int \frac{d \omega }{2\pi} {\rm Tr}\left[ \Gamma(\omega ) \left\{
(G^R -G^A) f(\omega ) + G^< \right\} \right]$ (147)

Note that $\Gamma(\omega ) $ and $f(\omega )$ are defined for the equilibrium L region.

Let's connect L-C-R. Use equations,

$\displaystyle G^<$ $\textstyle =$ $\displaystyle G^R \Sigma^< G^A$ (148)
$\displaystyle \Sigma^<$ $\textstyle =$ $\displaystyle i f_L(\omega ) \Gamma_L + i f_R(\omega ) \Gamma_R$ (149)
$\displaystyle \Gamma_L + \Gamma_R$ $\textstyle =$ $\displaystyle i ({G^A}^{-1} - {G^R}^{-1} )$ (150)
$\displaystyle G^R - G^A$ $\textstyle =$ $\displaystyle -i G^R(\Gamma_L + \Gamma_R) G^A$ (151)

$f_L(\omega )$ means $f(\omega -\mu_L)$ where $\mu_L$ is the chemical potential in the L region. $f_R(\omega )$ means $f(\omega -\mu_R)$. Note again that eq.(150) is evaluated assuming the system is in the equilibrium.
$\displaystyle J$ $\textstyle =$ $\displaystyle J_L = -J_R$ (152)
  $\textstyle =$ $\displaystyle (J_L-J_R)/2$ (153)
  $\textstyle =$ $\displaystyle \frac{e}{2i} \int \frac{d\omega }{2\pi} {\rm Tr} \left[
\Gamma_L (G^R-G^A) f_L + \Gamma_L G^<
- \Gamma_R (G^R-G^A) f_R - \Gamma_R G^< \right]$ (154)
  $\textstyle =$ $\displaystyle \frac{e}{2i} \int \frac{d\omega }{2\pi} {\rm Tr} \left[
(\Gamma _...
... G^A +
i(\Gamma _R -\Gamma _L) G^R (f_L \Gamma _L + f_R \Gamma _R ) G^A \right]$ (155)
  $\textstyle =$ $\displaystyle \frac{e}{2} \int \frac{d\omega }{2\pi} {\rm Tr} \left[
-f_L \Gamm...
... G^A
+f_R \Gamma _R G^R \Gamma _L G^A + f_R \Gamma _R G^R \Gamma _R G^A \right.$  
    $\displaystyle \left.
+f_L \Gamma _L G^R \Gamma _L G^A - f_L \Gamma _R G^R \Gamm...
... G^A
+f_R \Gamma _L G^R \Gamma _R G^A - f_R \Gamma _R G^R \Gamma _R G^A \right]$ (156)
  $\textstyle =$ $\displaystyle -\frac{e}{2} \int \frac{d\omega }{2\pi} {\rm Tr} \left[
(f_L-f_R) (\Gamma _L G^R \Gamma _R G^A ) + (f_L-f_R)(\Gamma _R G^R \Gamma _L G^A) \right]$ (157)
  $\textstyle =$ $\displaystyle - \frac{e}{2\pi} \int d\omega {\rm Tr} \left[ (f_L-f_R) (\Gamma _L G^R \Gamma _R G^A )
\right]$ (158)

Now $\hbar$ was 1. correct prefactor, \(e/(2\pi) \rightarrow e/(\hbar 2 \pi) = e/h \)

The prefactor in the definition of the current in the tight binding scheme (eq.(113)) is imaginary, but the evaluated current is real.


next up previous
次へ: surface Green function, non-orthogonal 上へ: current 戻る: derivation 1. time-dependent
kino 平成18年4月17日