next up previous
次へ: in the non-equilibrium, TRANSIESTA's 上へ: total charge 戻る: total charge using modifed

in the non-equilibrium


\begin{displaymath}
G_C^<(t) = i \langle c_i^+ c_j (t) \rangle
\end{displaymath}

One must calculate
$\displaystyle \rho_{ij}$ $\textstyle =$ $\displaystyle \langle c_i^+ c_j(0) \rangle$ (90)
  $\textstyle =$ $\displaystyle \frac{1}{i} G_C^{<}(0)$ (91)
  $\textstyle =$ $\displaystyle \frac{1}{2\pi i} \int_{-\infty}^{\infty} d\omega G_{C}^{<} (\omega )$ (92)

This can be evaluated only approximately.

Because \(
{G^A}^{-1}-{G^R}^{-1} = \Sigma^R-\Sigma^A = -i \Gamma
\),

\begin{displaymath}
2\pi A = i (G^R-G^A) = G^R\Gamma G^A = G^R (\Gamma_R+\Gamma_L) G^A
\end{displaymath} (93)

$A$ is the spectrum function.

At region C,

\begin{displaymath}
2\pi A = G^R\Gamma G^A = G^R (\Gamma_R+\Gamma_L) G^A
\end{displaymath} (94)

where $\Gamma=\Gamma_R+\Gamma_L$ because $\Sigma=\Sigma_R +\Sigma_L$.

Assume that the region of C near the region L and R is close to the equilibrium. If not, the self-energy defined in the region C can not be evaluated.

$\displaystyle G_{C}^{<}$ $\textstyle =$ $\displaystyle G_C^R \Sigma^< G_C^A$ (95)
  $\textstyle \simeq$ $\displaystyle G_C^R i (\Gamma_L f(\omega -\mu_L) +
\Gamma_R f(\omega -\mu_R) ) G_C^A$ (96)
  $\textstyle =$ $\displaystyle - G_C^R ( (\Sigma_L^R-\Sigma_L^A) f(\omega -\mu_L) +
(\Sigma_R^R - \Sigma_R^A) f(\omega -\mu_R) ) G_C^A$ (97)

Note that the left side of eq.(98) is not analytical.

If $\omega < \min(\mu_L,\mu_R)-10T$, $f(\omega -\mu)=1$. then

\begin{displaymath}
G^< = 2 \pi i A
\end{displaymath} (98)

then eq.(93) is
\begin{displaymath}
\rho_{ij} = \int_{-\infty}^{E_1} d\omega A_{ij}(w) +
\int_{E_1}^{\infty} \frac{d\omega }{2\pi i} G_{ij}^<(\omega )
\end{displaymath} (99)

The first term can be calculated in the same manner as the case of the equilibrium condition. For $\omega \ll\mu$, the electronic structure of the system will be close to the equilibrium. $E_1$ ( $< \min(\mu_L,\mu_R)-10T$) is the energy below which the electronic structure is close enough to the equilibrium state. Note $G^<(\omega )$ goes 0 for $\omega >\max(\mu_L,\mu_R)+10T$. the upper limit of the second term can be not an infinite.


next up previous
次へ: in the non-equilibrium, TRANSIESTA's 上へ: total charge 戻る: total charge using modifed
kino 平成18年4月17日