next up previous
次へ: in the non-equilibrium 上へ: in the equilibrium 戻る: total charge from contour

total charge using modifed matsubara summaiton


\begin{displaymath}
e^Z \simeq (1+Z/n)^n
\end{displaymath} (84)

then
\begin{displaymath}
f(Z) = \frac{1}{1+e^{\beta (Z-\mu) }} \simeq
\bar{f}(Z) =\frac{1}{1+\left(
1+\frac{\beta (Z-\mu)}{2M} \right)^{2M} }
\end{displaymath} (85)

\(f(Z) = \bar{f}(Z) \) when \( M\rightarrow \infty\)

$\bar{f}(Z)$ has poles at

$\displaystyle E_p$ $\textstyle =$ $\displaystyle \mu + \frac{2M}{\beta } (z_p -1)$ (86)
$\displaystyle z_p$ $\textstyle =$ $\displaystyle \exp\left( \frac{i\pi (2p+1)}{2M} \right)$ (87)

total charge is
$\displaystyle \rho \simeq \int_{-\infty}^{\infty} d\omega A(\omega ) \bar{f}(\omega )$     (88)

From the counter integration of the upper-half plane,
\begin{displaymath}
\int_{-\infty}^{\infty} d\omega A(\omega ) \bar{f}(\omega ) =
2 \pi i \sum_{p=0}^{M-1} A(E_p) R_p
\end{displaymath} (89)

where $R_p$ is residue and equals \( -z_p/\beta \).



kino 平成18年4月17日