next up previous
次へ: total charge using modifed 上へ: in the equilibrium 戻る: total charge from contour

total charge from contour integration 2

TRANSIESTA uses a different approach. eq.(75) can be written as
$\displaystyle \rho_{ij}$ $\textstyle =$ $\displaystyle \int_{-\infty}^{\infty} d\omega A_{ij}(\omega ) f(\omega -\mu)$ (80)
  $\textstyle =$ $\displaystyle -\frac{1}{\pi} {\rm Im} \int_{-\infty}^{\infty} d\omega G_{ij}^{R}(w)
f(\omega -\mu)$ (81)

where $f(\omega -\mu)$ is the Fermi distribution function. using the thermal Green function and the pole of $f(\omega )$ is at $i\omega _n$,
\begin{displaymath}
(\int_{L_1} + \int_{L_2} + \int_{L3}) d\omega G^R(\omega ) f...
...-2 \pi i \frac{1}{\beta} \sum_{i\omega _n}^{iQ} G(i\omega _n)
\end{displaymath} (82)

where the path $L_1$ is ($E_{min}$,0) $\rightarrow$ ($\infty$,0), $L_2$ is ($\infty$,$iQ$) $\rightarrow$ ($\mu$,$iQ$) and $L_3$ is ($\mu$,$iQ$) $\rightarrow$ ($E_{min}$,0). $E_{min}$ is smaller than the minimum of the eigenvalues. $Q$ is a small value enough to stabilize the integration. Then
\begin{displaymath}
\rho_{ij} = -\frac{1}{\pi} {\rm Im} \left[
\int_{L_2+L_3} d...
...\frac{1}{\beta} \sum_{i\omega _n}^{iQ} G(i\omega _n) \right]
\end{displaymath} (83)

practical upper limit to calculate $\int_{L_2} d\omega $ is $\sim \mu+10T$ due to the presence of $f(\omega -\mu)$

Note that $G^R$ has no pole in the upper half plane of $\omega $


next up previous
次へ: total charge using modifed 上へ: in the equilibrium 戻る: total charge from contour
kino 平成18年4月17日