Bistable switching behavior of anodic porous Alumina on Si substrate

J. W. Lee¹, S. Nigo¹, Y. Nakano², B. Nahlovskyy¹, S. Kato¹, H. Kitazawa¹ and G. Kido¹
¹ National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
² GIT Japan Inc., 2-15-10, Shin-Yokohama, Kohoku, Yokohama 222-0033, Japan

This work was executed under a subsidy of elements science and technology project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

National Institute for Materials and Science

> Introduction

Experimental Result

Porous alumina on bulk Al

Porous alumina on Si substrate

> Summary

Introduction

	SRAM	DRAM	Flash	Next generation memory			
				FeRAM	MRAM	PRAM	ReRAM
Cell size	140 F ²	4~8 F ²	4 F ²	12~25 F ²	20 F ²	4 F ²	4 ~ 6 F²
Speed	Н	-	-	Н	Н	-	н
Non- volatile	-	-	Y	Y	Y	Y	Υ
W&R times	>1 0 1 5	> 1 0 ^{1 5}	10 ⁶	10 ⁹ ~ 10 ¹²	> 1 0 ^{1 5}	?	?
Operati ng Pri nciple	Interlock circuit with transistor	Electric charge in a capacitance	Electric charge at the floating gate	Ferroelect ric ity with DRAM	Magneto resistance	Phase change between crystal and amorphous	Voltage induced resistance change?

Performance ① SRAM: high-speed and durability quality ② DRAM: high-accumulation and durability quality ③ Flash Memory: Nonvolatile and high-accumulation

Next generation memory is required all advantages of (1) (2) and (3).

National Institute for Materials and Science

Resistance RAM (ReRAM)

> Rresistivity can be electrically switched between high and low resistance states.

 \geq ReRAM is seen as a potential candidate to replace conventional Flash memory and hence to push NVM technology towards the (sub-)22nm technology node.

National Institute for Materials and Science

I-V character of ReRAM candidates

From CERC report (Inoue 2004, AIST)

We have developed an anodic porous alumina for ReRAM

National Institute for Materials and Science

radrication of Anouic Porous

JAL Resort Sea Hawk Hotel Fukuoka, Japan

AFM image of Porous Alumina

AFM tapping mode images

0.3M/l Oxalic acid 40V Pore diameter : 50nm pitch : 100nm

National Institute for Materials and Science

SEM and TEM image of Porous Alumina

Surface SEM image

National Institute for Materials and Science

Cross-sectional TEM image

21st International Microprocesses and Nanotechnology Conference October 27-30, 2008

JAL Resort Sea Hawk Hotel Fukuoka, Japan

Structural Analysis with NMR

National Institute for Materials and Science

Switching Properties of AlOx-ReRAM

National Institute for Materials and Science

Fabrication of Porous Alimina on Si substrate

National Institute for Materials and Science

radrication of Anouic Porous

SEM image of the sample

National Institute for Materials and Science

Electron Energy Loss Spectroscopy (EELS)

National Institute for Materials and Science

21st International Microprocesses and Nanotechnology Conference October 27-30, 2008

JAL Resort Sea Hawk Hotel Fukuoka, Japan

I-V Properties

I-V curve of fabricated on Si substrate

The sizes of the square are 200, 100, 50 and 25 micrometer. The upper electrode is made by AI deposition. The electric current is limited at plus 12 mA by a current limiting diode.

National Institute for Materials and Science

- > We have found a bistable switching effect in anodic porous alumina thin film.
- > The set/read/reset/read cycles were repeated more than 6000 cycles.
- > We also succeed in fabricating ReRAM cell using anodic porous alumina on Si substrate.
- > The current of OFF state is consisted of leak current and Fowler-Nordheim tunneling in low electric field region.

We believe anodic porous alumina is a promising material for a next-generation nonvolatile memory

National Institute for Materials and Science

